Spaces:
Runtime error
Runtime error
File size: 1,001 Bytes
23df2ff c125186 a6ca1ac c125186 a6ca1ac c125186 290ab60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import torch
import gradio as gr
from transformers import pipeline
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
pipe = pipeline("text-classification", model="./model", tokenizer=tokenizer)
def is_depression(txt):
pred_dict = pipe(txt)
for d in pred_dict:
d['label'] = False if d['label'] == 'LABEL_0' else True
return [{item['label']: item['score']} for item in pred_dict]
def predict_gradio(txt):
return is_depression(txt)[0]
title = "Depression Classifier"
description = "A NLP classifier trained with Hugging Face Transformers."
interpretation='default'
examples = ["Today is a great day!", "I have no motivation to do anything. I feel useless."]
enable_queue=True
gr.Interface(fn=predict_gradio, inputs=gr.inputs.Textbox(label="Text"), outputs=gr.outputs.Label(label="is_depression"), title=title,description=description,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()
|