File size: 103,518 Bytes
26ccc67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "t6MPjfT5NrKQ"
      },
      "source": [
        "<div align=\"center\">\n",
        "\n",
        "  <a href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
        "    <img width=\"1024\", src=\"https://raw.githubusercontent.com/ultralytics/assets/main/yolov5/v70/splash.png\"></a>\n",
        "\n",
        "\n",
        "<br>\n",
        "  <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a>\n",
        "  <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/classify/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
        "  <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
        "<br>\n",
        "\n",
        "This <a href=\"https://github.com/ultralytics/yolov5\">YOLOv5</a> 🚀 notebook by <a href=\"https://ultralytics.com\">Ultralytics</a> presents simple train, validate and predict examples to help start your AI adventure.<br>See <a href=\"https://github.com/ultralytics/yolov5/issues/new/choose\">GitHub</a> for community support or <a href=\"https://ultralytics.com/contact\">contact us</a> for professional support.\n",
        "\n",
        "</div>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "7mGmQbAO5pQb"
      },
      "source": [
        "# Setup\n",
        "\n",
        "Clone GitHub [repository](https://github.com/ultralytics/yolov5), install [dependencies](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) and check PyTorch and GPU."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "wbvMlHd_QwMG",
        "outputId": "0806e375-610d-4ec0-c867-763dbb518279"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n"
          ]
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 22.6/78.2 GB disk)\n"
          ]
        }
      ],
      "source": [
        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
        "%cd yolov5\n",
        "%pip install -qr requirements.txt  # install\n",
        "\n",
        "import torch\n",
        "import utils\n",
        "display = utils.notebook_init()  # checks"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4JnkELT0cIJg"
      },
      "source": [
        "# 1. Predict\n",
        "\n",
        "`classify/predict.py` runs YOLOv5 Classifcation inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/predict-cls`. Example inference sources are:\n",
        "\n",
        "```shell\n",
        "python classify/predict.py --source 0  # webcam\n",
        "                              img.jpg  # image \n",
        "                              vid.mp4  # video\n",
        "                              screen  # screenshot\n",
        "                              path/  # directory\n",
        "                              'path/*.jpg'  # glob\n",
        "                              'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
        "                              'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
        "```"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "zR9ZbuQCH7FX",
        "outputId": "50504ef7-aa3e-4281-a4e3-d0c7df3c0ffe"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1mclassify/predict: \u001b[0mweights=['yolov5s-cls.pt'], source=data/images, data=data/coco128.yaml, imgsz=[224, 224], device=, view_img=False, save_txt=False, nosave=False, augment=False, visualize=False, update=False, project=runs/predict-cls, name=exp, exist_ok=False, half=False, dnn=False, vid_stride=1\n",
            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
            "\n",
            "Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s-cls.pt to yolov5s-cls.pt...\n",
            "100% 10.5M/10.5M [00:00<00:00, 12.3MB/s]\n",
            "\n",
            "Fusing layers... \n",
            "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
            "image 1/2 /content/yolov5/data/images/bus.jpg: 224x224 minibus 0.39, police van 0.24, amphibious vehicle 0.05, recreational vehicle 0.04, trolleybus 0.03, 3.9ms\n",
            "image 2/2 /content/yolov5/data/images/zidane.jpg: 224x224 suit 0.38, bow tie 0.19, bridegroom 0.18, rugby ball 0.04, stage 0.02, 4.6ms\n",
            "Speed: 0.3ms pre-process, 4.3ms inference, 1.5ms NMS per image at shape (1, 3, 224, 224)\n",
            "Results saved to \u001b[1mruns/predict-cls/exp\u001b[0m\n"
          ]
        }
      ],
      "source": [
        "!python classify/predict.py --weights yolov5s-cls.pt --img 224 --source data/images\n",
        "# display.Image(filename='runs/predict-cls/exp/zidane.jpg', width=600)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hkAzDWJ7cWTr"
      },
      "source": [
        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/202808393-50deb439-ae1b-4246-a685-7560c9b37211.jpg\" width=\"600\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0eq1SMWl6Sfn"
      },
      "source": [
        "# 2. Validate\n",
        "Validate a model's accuracy on the [Imagenet](https://image-net.org/) dataset's `val` or `test` splits. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "WQPtK1QYVaD_",
        "outputId": "20fc0630-141e-4a90-ea06-342cbd7ce496"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "--2022-11-22 19:53:40--  https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar\n",
            "Resolving image-net.org (image-net.org)... 171.64.68.16\n",
            "Connecting to image-net.org (image-net.org)|171.64.68.16|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 6744924160 (6.3G) [application/x-tar]\n",
            "Saving to: ‘ILSVRC2012_img_val.tar’\n",
            "\n",
            "ILSVRC2012_img_val. 100%[===================>]   6.28G  16.1MB/s    in 10m 52s \n",
            "\n",
            "2022-11-22 20:04:32 (9.87 MB/s) - ‘ILSVRC2012_img_val.tar’ saved [6744924160/6744924160]\n",
            "\n"
          ]
        }
      ],
      "source": [
        "# Download Imagenet val (6.3G, 50000 images)\n",
        "!bash data/scripts/get_imagenet.sh --val"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "X58w8JLpMnjH",
        "outputId": "41843132-98e2-4c25-d474-4cd7b246fb8e"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1mclassify/val: \u001b[0mdata=../datasets/imagenet, weights=['yolov5s-cls.pt'], batch_size=128, imgsz=224, device=, workers=8, verbose=True, project=runs/val-cls, name=exp, exist_ok=False, half=True, dnn=False\n",
            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
            "\n",
            "Fusing layers... \n",
            "Model summary: 117 layers, 5447688 parameters, 0 gradients, 11.4 GFLOPs\n",
            "validating: 100% 391/391 [04:57<00:00,  1.31it/s]\n",
            "                   Class      Images    top1_acc    top5_acc\n",
            "                     all       50000       0.715       0.902\n",
            "                   tench          50        0.94        0.98\n",
            "                goldfish          50        0.88        0.92\n",
            "       great white shark          50        0.78        0.96\n",
            "             tiger shark          50        0.68        0.96\n",
            "        hammerhead shark          50        0.82        0.92\n",
            "            electric ray          50        0.76         0.9\n",
            "                stingray          50         0.7         0.9\n",
            "                    cock          50        0.78        0.92\n",
            "                     hen          50        0.84        0.96\n",
            "                 ostrich          50        0.98           1\n",
            "               brambling          50         0.9        0.96\n",
            "               goldfinch          50        0.92        0.98\n",
            "             house finch          50        0.88        0.96\n",
            "                   junco          50        0.94        0.98\n",
            "          indigo bunting          50        0.86        0.88\n",
            "          American robin          50         0.9        0.96\n",
            "                  bulbul          50        0.84        0.96\n",
            "                     jay          50         0.9        0.96\n",
            "                  magpie          50        0.84        0.96\n",
            "               chickadee          50         0.9           1\n",
            "         American dipper          50        0.82        0.92\n",
            "                    kite          50        0.76        0.94\n",
            "              bald eagle          50        0.92           1\n",
            "                 vulture          50        0.96           1\n",
            "          great grey owl          50        0.94        0.98\n",
            "         fire salamander          50        0.96        0.98\n",
            "             smooth newt          50        0.58        0.94\n",
            "                    newt          50        0.74         0.9\n",
            "      spotted salamander          50        0.86        0.94\n",
            "                 axolotl          50        0.86        0.96\n",
            "       American bullfrog          50        0.78        0.92\n",
            "               tree frog          50        0.84        0.96\n",
            "             tailed frog          50        0.48         0.8\n",
            "   loggerhead sea turtle          50        0.68        0.94\n",
            "  leatherback sea turtle          50         0.5         0.8\n",
            "              mud turtle          50        0.64        0.84\n",
            "                terrapin          50        0.52        0.98\n",
            "              box turtle          50        0.84        0.98\n",
            "            banded gecko          50         0.7        0.88\n",
            "            green iguana          50        0.76        0.94\n",
            "          Carolina anole          50        0.58        0.96\n",
            "desert grassland whiptail lizard          50        0.82        0.94\n",
            "                   agama          50        0.74        0.92\n",
            "   frilled-necked lizard          50        0.84        0.86\n",
            "        alligator lizard          50        0.58        0.78\n",
            "            Gila monster          50        0.72         0.8\n",
            "   European green lizard          50        0.42         0.9\n",
            "               chameleon          50        0.76        0.84\n",
            "           Komodo dragon          50        0.86        0.96\n",
            "          Nile crocodile          50         0.7        0.84\n",
            "      American alligator          50        0.76        0.96\n",
            "             triceratops          50         0.9        0.94\n",
            "              worm snake          50        0.76        0.88\n",
            "       ring-necked snake          50         0.8        0.92\n",
            " eastern hog-nosed snake          50        0.58        0.88\n",
            "      smooth green snake          50         0.6        0.94\n",
            "               kingsnake          50        0.82         0.9\n",
            "            garter snake          50        0.88        0.94\n",
            "             water snake          50         0.7        0.94\n",
            "              vine snake          50        0.66        0.76\n",
            "             night snake          50        0.34        0.82\n",
            "         boa constrictor          50         0.8        0.96\n",
            "     African rock python          50        0.48        0.76\n",
            "            Indian cobra          50        0.82        0.94\n",
            "             green mamba          50        0.54        0.86\n",
            "               sea snake          50        0.62         0.9\n",
            "    Saharan horned viper          50        0.56        0.86\n",
            "eastern diamondback rattlesnake          50         0.6        0.86\n",
            "              sidewinder          50        0.28        0.86\n",
            "               trilobite          50        0.98        0.98\n",
            "              harvestman          50        0.86        0.94\n",
            "                scorpion          50        0.86        0.94\n",
            "    yellow garden spider          50        0.92        0.96\n",
            "             barn spider          50        0.38        0.98\n",
            "  European garden spider          50        0.62        0.98\n",
            "    southern black widow          50        0.88        0.94\n",
            "               tarantula          50        0.94           1\n",
            "             wolf spider          50        0.82        0.92\n",
            "                    tick          50        0.74        0.84\n",
            "               centipede          50        0.68        0.82\n",
            "            black grouse          50        0.88        0.98\n",
            "               ptarmigan          50        0.78        0.94\n",
            "           ruffed grouse          50        0.88           1\n",
            "          prairie grouse          50        0.92           1\n",
            "                 peacock          50        0.88         0.9\n",
            "                   quail          50         0.9        0.94\n",
            "               partridge          50        0.74        0.96\n",
            "             grey parrot          50         0.9        0.96\n",
            "                   macaw          50        0.88        0.98\n",
            "sulphur-crested cockatoo          50        0.86        0.92\n",
            "                lorikeet          50        0.96           1\n",
            "                  coucal          50        0.82        0.88\n",
            "               bee eater          50        0.96        0.98\n",
            "                hornbill          50         0.9        0.96\n",
            "             hummingbird          50        0.88        0.96\n",
            "                 jacamar          50        0.92        0.94\n",
            "                  toucan          50        0.84        0.94\n",
            "                    duck          50        0.76        0.94\n",
            "  red-breasted merganser          50        0.86        0.96\n",
            "                   goose          50        0.74        0.96\n",
            "              black swan          50        0.94        0.98\n",
            "                  tusker          50        0.54        0.92\n",
            "                 echidna          50        0.98           1\n",
            "                platypus          50        0.72        0.84\n",
            "                 wallaby          50        0.78        0.88\n",
            "                   koala          50        0.84        0.92\n",
            "                  wombat          50        0.78        0.84\n",
            "               jellyfish          50        0.88        0.96\n",
            "             sea anemone          50        0.72         0.9\n",
            "             brain coral          50        0.88        0.96\n",
            "                flatworm          50         0.8        0.98\n",
            "                nematode          50        0.86         0.9\n",
            "                   conch          50        0.74        0.88\n",
            "                   snail          50        0.78        0.88\n",
            "                    slug          50        0.74        0.82\n",
            "                sea slug          50        0.88        0.98\n",
            "                  chiton          50        0.88        0.98\n",
            "      chambered nautilus          50        0.88        0.92\n",
            "          Dungeness crab          50        0.78        0.94\n",
            "               rock crab          50        0.68        0.86\n",
            "            fiddler crab          50        0.64        0.86\n",
            "           red king crab          50        0.76        0.96\n",
            "        American lobster          50        0.78        0.96\n",
            "           spiny lobster          50        0.74        0.88\n",
            "                crayfish          50        0.56        0.86\n",
            "             hermit crab          50        0.78        0.96\n",
            "                  isopod          50        0.66        0.78\n",
            "             white stork          50        0.88        0.96\n",
            "             black stork          50        0.84        0.98\n",
            "               spoonbill          50        0.96           1\n",
            "                flamingo          50        0.94           1\n",
            "       little blue heron          50        0.92        0.98\n",
            "             great egret          50         0.9        0.96\n",
            "                 bittern          50        0.86        0.94\n",
            "            crane (bird)          50        0.62         0.9\n",
            "                 limpkin          50        0.98           1\n",
            "        common gallinule          50        0.92        0.96\n",
            "           American coot          50         0.9        0.98\n",
            "                 bustard          50        0.92        0.96\n",
            "         ruddy turnstone          50        0.94           1\n",
            "                  dunlin          50        0.86        0.94\n",
            "         common redshank          50         0.9        0.96\n",
            "               dowitcher          50        0.84        0.96\n",
            "           oystercatcher          50        0.86        0.94\n",
            "                 pelican          50        0.92        0.96\n",
            "            king penguin          50        0.88        0.96\n",
            "               albatross          50         0.9           1\n",
            "              grey whale          50        0.84        0.92\n",
            "            killer whale          50        0.92           1\n",
            "                  dugong          50        0.84        0.96\n",
            "                sea lion          50        0.82        0.92\n",
            "               Chihuahua          50        0.66        0.84\n",
            "           Japanese Chin          50        0.72        0.98\n",
            "                 Maltese          50        0.76        0.94\n",
            "               Pekingese          50        0.84        0.94\n",
            "                Shih Tzu          50        0.74        0.96\n",
            "    King Charles Spaniel          50        0.88        0.98\n",
            "                Papillon          50        0.86        0.94\n",
            "             toy terrier          50        0.48        0.94\n",
            "     Rhodesian Ridgeback          50        0.76        0.98\n",
            "            Afghan Hound          50        0.84           1\n",
            "            Basset Hound          50         0.8        0.92\n",
            "                  Beagle          50        0.82        0.96\n",
            "              Bloodhound          50        0.48        0.72\n",
            "      Bluetick Coonhound          50        0.86        0.94\n",
            " Black and Tan Coonhound          50        0.54         0.8\n",
            "Treeing Walker Coonhound          50        0.66        0.98\n",
            "        English foxhound          50        0.32        0.84\n",
            "       Redbone Coonhound          50        0.62        0.94\n",
            "                  borzoi          50        0.92           1\n",
            "         Irish Wolfhound          50        0.48        0.88\n",
            "       Italian Greyhound          50        0.76        0.98\n",
            "                 Whippet          50        0.74        0.92\n",
            "            Ibizan Hound          50         0.6        0.86\n",
            "      Norwegian Elkhound          50        0.88        0.98\n",
            "              Otterhound          50        0.62         0.9\n",
            "                  Saluki          50        0.72        0.92\n",
            "      Scottish Deerhound          50        0.86        0.98\n",
            "              Weimaraner          50        0.88        0.94\n",
            "Staffordshire Bull Terrier          50        0.66        0.98\n",
            "American Staffordshire Terrier          50        0.64        0.92\n",
            "      Bedlington Terrier          50         0.9        0.92\n",
            "          Border Terrier          50        0.86        0.92\n",
            "      Kerry Blue Terrier          50        0.78        0.98\n",
            "           Irish Terrier          50         0.7        0.96\n",
            "         Norfolk Terrier          50        0.68         0.9\n",
            "         Norwich Terrier          50        0.72           1\n",
            "       Yorkshire Terrier          50        0.66         0.9\n",
            "        Wire Fox Terrier          50        0.64        0.98\n",
            "        Lakeland Terrier          50        0.74        0.92\n",
            "        Sealyham Terrier          50        0.76         0.9\n",
            "        Airedale Terrier          50        0.82        0.92\n",
            "           Cairn Terrier          50        0.76         0.9\n",
            "      Australian Terrier          50        0.48        0.84\n",
            "  Dandie Dinmont Terrier          50        0.82        0.92\n",
            "          Boston Terrier          50        0.92           1\n",
            "     Miniature Schnauzer          50        0.68         0.9\n",
            "         Giant Schnauzer          50        0.72        0.98\n",
            "      Standard Schnauzer          50        0.74           1\n",
            "        Scottish Terrier          50        0.76        0.96\n",
            "         Tibetan Terrier          50        0.48           1\n",
            "Australian Silky Terrier          50        0.66        0.96\n",
            "Soft-coated Wheaten Terrier          50        0.74        0.96\n",
            "West Highland White Terrier          50        0.88        0.96\n",
            "              Lhasa Apso          50        0.68        0.96\n",
            "   Flat-Coated Retriever          50        0.72        0.94\n",
            "  Curly-coated Retriever          50        0.82        0.94\n",
            "        Golden Retriever          50        0.86        0.94\n",
            "      Labrador Retriever          50        0.82        0.94\n",
            "Chesapeake Bay Retriever          50        0.76        0.96\n",
            "German Shorthaired Pointer          50         0.8        0.96\n",
            "                  Vizsla          50        0.68        0.96\n",
            "          English Setter          50         0.7           1\n",
            "            Irish Setter          50         0.8         0.9\n",
            "           Gordon Setter          50        0.84        0.92\n",
            "                Brittany          50        0.84        0.96\n",
            "         Clumber Spaniel          50        0.92        0.96\n",
            "English Springer Spaniel          50        0.88           1\n",
            "  Welsh Springer Spaniel          50        0.92           1\n",
            "         Cocker Spaniels          50         0.7        0.94\n",
            "          Sussex Spaniel          50        0.72        0.92\n",
            "     Irish Water Spaniel          50        0.88        0.98\n",
            "                  Kuvasz          50        0.66         0.9\n",
            "              Schipperke          50         0.9        0.98\n",
            "             Groenendael          50         0.8        0.94\n",
            "                Malinois          50        0.86        0.98\n",
            "                  Briard          50        0.52         0.8\n",
            "       Australian Kelpie          50         0.6        0.88\n",
            "                Komondor          50        0.88        0.94\n",
            "    Old English Sheepdog          50        0.94        0.98\n",
            "       Shetland Sheepdog          50        0.74         0.9\n",
            "                  collie          50         0.6        0.96\n",
            "           Border Collie          50        0.74        0.96\n",
            "    Bouvier des Flandres          50        0.78        0.94\n",
            "              Rottweiler          50        0.88        0.96\n",
            "     German Shepherd Dog          50         0.8        0.98\n",
            "               Dobermann          50        0.68        0.96\n",
            "      Miniature Pinscher          50        0.76        0.88\n",
            "Greater Swiss Mountain Dog          50        0.68        0.94\n",
            "    Bernese Mountain Dog          50        0.96           1\n",
            "  Appenzeller Sennenhund          50        0.22           1\n",
            "  Entlebucher Sennenhund          50        0.64        0.98\n",
            "                   Boxer          50         0.7        0.92\n",
            "             Bullmastiff          50        0.78        0.98\n",
            "         Tibetan Mastiff          50        0.88        0.96\n",
            "          French Bulldog          50        0.84        0.94\n",
            "              Great Dane          50        0.54         0.9\n",
            "             St. Bernard          50        0.92           1\n",
            "                   husky          50        0.46        0.98\n",
            "        Alaskan Malamute          50        0.76        0.96\n",
            "          Siberian Husky          50        0.46        0.98\n",
            "               Dalmatian          50        0.94        0.98\n",
            "           Affenpinscher          50        0.78         0.9\n",
            "                 Basenji          50        0.92        0.94\n",
            "                     pug          50        0.94        0.98\n",
            "              Leonberger          50           1           1\n",
            "            Newfoundland          50        0.78        0.96\n",
            "   Pyrenean Mountain Dog          50        0.78        0.96\n",
            "                 Samoyed          50        0.96           1\n",
            "              Pomeranian          50        0.98           1\n",
            "               Chow Chow          50         0.9        0.96\n",
            "                Keeshond          50        0.88        0.94\n",
            "      Griffon Bruxellois          50        0.84        0.98\n",
            "    Pembroke Welsh Corgi          50        0.82        0.94\n",
            "    Cardigan Welsh Corgi          50        0.66        0.98\n",
            "              Toy Poodle          50        0.52        0.88\n",
            "        Miniature Poodle          50        0.52        0.92\n",
            "         Standard Poodle          50         0.8           1\n",
            "    Mexican hairless dog          50        0.88        0.98\n",
            "               grey wolf          50        0.82        0.92\n",
            "     Alaskan tundra wolf          50        0.78        0.98\n",
            "                red wolf          50        0.48         0.9\n",
            "                  coyote          50        0.64        0.86\n",
            "                   dingo          50        0.76        0.88\n",
            "                   dhole          50         0.9        0.98\n",
            "        African wild dog          50        0.98           1\n",
            "                   hyena          50        0.88        0.96\n",
            "                 red fox          50        0.54        0.92\n",
            "                 kit fox          50        0.72        0.98\n",
            "              Arctic fox          50        0.94           1\n",
            "                grey fox          50         0.7        0.94\n",
            "               tabby cat          50        0.54        0.92\n",
            "               tiger cat          50        0.22        0.94\n",
            "             Persian cat          50         0.9        0.98\n",
            "             Siamese cat          50        0.96           1\n",
            "            Egyptian Mau          50        0.54         0.8\n",
            "                  cougar          50         0.9           1\n",
            "                    lynx          50        0.72        0.88\n",
            "                 leopard          50        0.78        0.98\n",
            "            snow leopard          50         0.9        0.98\n",
            "                  jaguar          50         0.7        0.94\n",
            "                    lion          50         0.9        0.98\n",
            "                   tiger          50        0.92        0.98\n",
            "                 cheetah          50        0.94        0.98\n",
            "              brown bear          50        0.94        0.98\n",
            "     American black bear          50         0.8           1\n",
            "              polar bear          50        0.84        0.96\n",
            "              sloth bear          50        0.72        0.92\n",
            "                mongoose          50         0.7        0.92\n",
            "                 meerkat          50        0.82        0.92\n",
            "            tiger beetle          50        0.92        0.94\n",
            "                 ladybug          50        0.86        0.94\n",
            "           ground beetle          50        0.64        0.94\n",
            "         longhorn beetle          50        0.62        0.88\n",
            "             leaf beetle          50        0.64        0.98\n",
            "             dung beetle          50        0.86        0.98\n",
            "       rhinoceros beetle          50        0.86        0.94\n",
            "                  weevil          50         0.9           1\n",
            "                     fly          50        0.78        0.94\n",
            "                     bee          50        0.68        0.94\n",
            "                     ant          50        0.68        0.78\n",
            "             grasshopper          50         0.5        0.92\n",
            "                 cricket          50        0.64        0.92\n",
            "            stick insect          50        0.64        0.92\n",
            "               cockroach          50        0.72         0.8\n",
            "                  mantis          50        0.64        0.86\n",
            "                  cicada          50         0.9        0.96\n",
            "              leafhopper          50        0.88        0.94\n",
            "                lacewing          50        0.78        0.92\n",
            "               dragonfly          50        0.82        0.98\n",
            "               damselfly          50        0.82           1\n",
            "             red admiral          50        0.94        0.96\n",
            "                 ringlet          50        0.86        0.98\n",
            "       monarch butterfly          50         0.9        0.92\n",
            "             small white          50         0.9           1\n",
            "       sulphur butterfly          50        0.92           1\n",
            "gossamer-winged butterfly          50        0.88           1\n",
            "                starfish          50        0.88        0.92\n",
            "              sea urchin          50        0.84        0.94\n",
            "            sea cucumber          50        0.66        0.84\n",
            "       cottontail rabbit          50        0.72        0.94\n",
            "                    hare          50        0.84        0.96\n",
            "           Angora rabbit          50        0.94        0.98\n",
            "                 hamster          50        0.96           1\n",
            "               porcupine          50        0.88        0.98\n",
            "            fox squirrel          50        0.76        0.94\n",
            "                  marmot          50        0.92        0.96\n",
            "                  beaver          50        0.78        0.94\n",
            "              guinea pig          50        0.78        0.94\n",
            "           common sorrel          50        0.96        0.98\n",
            "                   zebra          50        0.94        0.96\n",
            "                     pig          50         0.5        0.76\n",
            "               wild boar          50        0.84        0.96\n",
            "                 warthog          50        0.84        0.96\n",
            "            hippopotamus          50        0.88        0.96\n",
            "                      ox          50        0.48        0.94\n",
            "           water buffalo          50        0.78        0.94\n",
            "                   bison          50        0.88        0.96\n",
            "                     ram          50        0.58        0.92\n",
            "           bighorn sheep          50        0.66           1\n",
            "             Alpine ibex          50        0.92        0.98\n",
            "              hartebeest          50        0.94           1\n",
            "                  impala          50        0.82        0.96\n",
            "                 gazelle          50         0.7        0.96\n",
            "               dromedary          50         0.9           1\n",
            "                   llama          50        0.82        0.94\n",
            "                  weasel          50        0.44        0.92\n",
            "                    mink          50        0.78        0.96\n",
            "        European polecat          50        0.46         0.9\n",
            "     black-footed ferret          50        0.68        0.96\n",
            "                   otter          50        0.66        0.88\n",
            "                   skunk          50        0.96        0.96\n",
            "                  badger          50        0.86        0.92\n",
            "               armadillo          50        0.88         0.9\n",
            "        three-toed sloth          50        0.96           1\n",
            "               orangutan          50        0.78        0.92\n",
            "                 gorilla          50        0.82        0.94\n",
            "              chimpanzee          50        0.84        0.94\n",
            "                  gibbon          50        0.76        0.86\n",
            "                 siamang          50        0.68        0.94\n",
            "                  guenon          50         0.8        0.94\n",
            "            patas monkey          50        0.62        0.82\n",
            "                  baboon          50         0.9        0.98\n",
            "                 macaque          50         0.8        0.86\n",
            "                  langur          50         0.6        0.82\n",
            " black-and-white colobus          50        0.86         0.9\n",
            "        proboscis monkey          50           1           1\n",
            "                marmoset          50        0.74        0.98\n",
            "   white-headed capuchin          50        0.72         0.9\n",
            "           howler monkey          50        0.86        0.94\n",
            "                    titi          50         0.5         0.9\n",
            "Geoffroy's spider monkey          50        0.42         0.8\n",
            "  common squirrel monkey          50        0.76        0.92\n",
            "       ring-tailed lemur          50        0.72        0.94\n",
            "                   indri          50         0.9        0.96\n",
            "          Asian elephant          50        0.58        0.92\n",
            "   African bush elephant          50         0.7        0.98\n",
            "               red panda          50        0.94        0.94\n",
            "             giant panda          50        0.94        0.98\n",
            "                   snoek          50        0.74         0.9\n",
            "                     eel          50         0.6        0.84\n",
            "             coho salmon          50        0.84        0.96\n",
            "             rock beauty          50        0.88        0.98\n",
            "               clownfish          50        0.78        0.98\n",
            "                sturgeon          50        0.68        0.94\n",
            "                 garfish          50        0.62         0.8\n",
            "                lionfish          50        0.96        0.96\n",
            "              pufferfish          50        0.88        0.96\n",
            "                  abacus          50        0.74        0.88\n",
            "                   abaya          50        0.84        0.92\n",
            "           academic gown          50        0.42        0.86\n",
            "               accordion          50         0.8         0.9\n",
            "         acoustic guitar          50         0.5        0.76\n",
            "        aircraft carrier          50         0.8        0.96\n",
            "                airliner          50        0.92           1\n",
            "                 airship          50        0.76        0.82\n",
            "                   altar          50        0.64        0.98\n",
            "               ambulance          50        0.88        0.98\n",
            "      amphibious vehicle          50        0.64        0.94\n",
            "            analog clock          50        0.52        0.92\n",
            "                  apiary          50        0.82        0.96\n",
            "                   apron          50         0.7        0.84\n",
            "         waste container          50         0.4         0.8\n",
            "           assault rifle          50        0.42        0.84\n",
            "                backpack          50        0.34        0.64\n",
            "                  bakery          50         0.4        0.68\n",
            "            balance beam          50         0.8        0.98\n",
            "                 balloon          50        0.86        0.96\n",
            "           ballpoint pen          50        0.52        0.96\n",
            "                Band-Aid          50         0.7         0.9\n",
            "                   banjo          50        0.84           1\n",
            "                baluster          50        0.68        0.94\n",
            "                 barbell          50        0.56         0.9\n",
            "            barber chair          50         0.7        0.92\n",
            "              barbershop          50        0.54        0.86\n",
            "                    barn          50        0.96        0.96\n",
            "               barometer          50        0.84        0.98\n",
            "                  barrel          50        0.56        0.88\n",
            "             wheelbarrow          50        0.66        0.88\n",
            "                baseball          50        0.74        0.98\n",
            "              basketball          50        0.88        0.98\n",
            "                bassinet          50        0.66        0.92\n",
            "                 bassoon          50        0.74        0.98\n",
            "            swimming cap          50        0.62        0.88\n",
            "              bath towel          50        0.54        0.78\n",
            "                 bathtub          50         0.4        0.88\n",
            "           station wagon          50        0.66        0.84\n",
            "              lighthouse          50        0.78        0.94\n",
            "                  beaker          50        0.52        0.68\n",
            "            military cap          50        0.84        0.96\n",
            "             beer bottle          50        0.66        0.88\n",
            "              beer glass          50         0.6        0.84\n",
            "                bell-cot          50        0.56        0.96\n",
            "                     bib          50        0.58        0.82\n",
            "          tandem bicycle          50        0.86        0.96\n",
            "                  bikini          50        0.56        0.88\n",
            "             ring binder          50        0.64        0.84\n",
            "              binoculars          50        0.54        0.78\n",
            "               birdhouse          50        0.86        0.94\n",
            "               boathouse          50        0.74        0.92\n",
            "               bobsleigh          50        0.92        0.96\n",
            "                bolo tie          50         0.8        0.94\n",
            "             poke bonnet          50        0.64        0.86\n",
            "                bookcase          50        0.66        0.92\n",
            "               bookstore          50        0.62        0.88\n",
            "              bottle cap          50        0.58         0.7\n",
            "                     bow          50        0.72        0.86\n",
            "                 bow tie          50         0.7         0.9\n",
            "                   brass          50        0.92        0.96\n",
            "                     bra          50         0.5         0.7\n",
            "              breakwater          50        0.62        0.86\n",
            "             breastplate          50         0.4         0.9\n",
            "                   broom          50         0.6        0.86\n",
            "                  bucket          50        0.66         0.8\n",
            "                  buckle          50         0.5        0.68\n",
            "        bulletproof vest          50         0.5        0.78\n",
            "        high-speed train          50        0.94        0.96\n",
            "            butcher shop          50        0.74        0.94\n",
            "                 taxicab          50        0.64        0.86\n",
            "                cauldron          50        0.44        0.66\n",
            "                  candle          50        0.48        0.74\n",
            "                  cannon          50        0.88        0.94\n",
            "                   canoe          50        0.94           1\n",
            "              can opener          50        0.66        0.86\n",
            "                cardigan          50        0.68         0.8\n",
            "              car mirror          50        0.94        0.96\n",
            "                carousel          50        0.94        0.98\n",
            "                tool kit          50        0.56        0.78\n",
            "                  carton          50        0.42         0.7\n",
            "               car wheel          50        0.38        0.74\n",
            "automated teller machine          50        0.76        0.94\n",
            "                cassette          50        0.52         0.8\n",
            "         cassette player          50        0.28         0.9\n",
            "                  castle          50        0.78        0.88\n",
            "               catamaran          50        0.78           1\n",
            "               CD player          50        0.52        0.82\n",
            "                   cello          50        0.82           1\n",
            "            mobile phone          50        0.68        0.86\n",
            "                   chain          50        0.38        0.66\n",
            "        chain-link fence          50         0.7        0.84\n",
            "              chain mail          50        0.64         0.9\n",
            "                chainsaw          50        0.84        0.92\n",
            "                   chest          50        0.68        0.92\n",
            "              chiffonier          50        0.26        0.64\n",
            "                   chime          50        0.62        0.84\n",
            "           china cabinet          50        0.82        0.96\n",
            "      Christmas stocking          50        0.92        0.94\n",
            "                  church          50        0.62         0.9\n",
            "           movie theater          50        0.58        0.88\n",
            "                 cleaver          50        0.32        0.62\n",
            "          cliff dwelling          50        0.88           1\n",
            "                   cloak          50        0.32        0.64\n",
            "                   clogs          50        0.58        0.88\n",
            "         cocktail shaker          50        0.62         0.7\n",
            "              coffee mug          50        0.44        0.72\n",
            "             coffeemaker          50        0.64        0.92\n",
            "                    coil          50        0.66        0.84\n",
            "        combination lock          50        0.64        0.84\n",
            "       computer keyboard          50         0.7        0.82\n",
            "     confectionery store          50        0.54        0.86\n",
            "          container ship          50        0.82        0.98\n",
            "             convertible          50        0.78        0.98\n",
            "               corkscrew          50        0.82        0.92\n",
            "                  cornet          50        0.46        0.88\n",
            "             cowboy boot          50        0.64         0.8\n",
            "              cowboy hat          50        0.64        0.82\n",
            "                  cradle          50        0.38         0.8\n",
            "         crane (machine)          50        0.78        0.94\n",
            "            crash helmet          50        0.92        0.96\n",
            "                   crate          50        0.52        0.82\n",
            "              infant bed          50        0.74           1\n",
            "               Crock Pot          50        0.78         0.9\n",
            "            croquet ball          50         0.9        0.96\n",
            "                  crutch          50        0.46         0.7\n",
            "                 cuirass          50        0.54        0.86\n",
            "                     dam          50        0.74        0.92\n",
            "                    desk          50         0.6        0.86\n",
            "        desktop computer          50        0.54        0.94\n",
            "   rotary dial telephone          50        0.88        0.94\n",
            "                  diaper          50        0.68        0.84\n",
            "           digital clock          50        0.54        0.76\n",
            "           digital watch          50        0.58        0.86\n",
            "            dining table          50        0.76         0.9\n",
            "               dishcloth          50        0.94           1\n",
            "              dishwasher          50        0.44        0.78\n",
            "              disc brake          50        0.98           1\n",
            "                    dock          50        0.54        0.94\n",
            "                dog sled          50        0.84           1\n",
            "                    dome          50        0.72        0.92\n",
            "                 doormat          50        0.56        0.82\n",
            "            drilling rig          50        0.84        0.96\n",
            "                    drum          50        0.38        0.68\n",
            "               drumstick          50        0.56        0.72\n",
            "                dumbbell          50        0.62         0.9\n",
            "              Dutch oven          50         0.7        0.84\n",
            "            electric fan          50        0.82        0.86\n",
            "         electric guitar          50        0.62        0.84\n",
            "     electric locomotive          50        0.92        0.98\n",
            "    entertainment center          50         0.9        0.98\n",
            "                envelope          50        0.44        0.86\n",
            "        espresso machine          50        0.72        0.94\n",
            "             face powder          50         0.7        0.92\n",
            "             feather boa          50         0.7        0.84\n",
            "          filing cabinet          50        0.88        0.98\n",
            "                fireboat          50        0.94        0.98\n",
            "             fire engine          50        0.84         0.9\n",
            "       fire screen sheet          50        0.62        0.76\n",
            "                flagpole          50        0.74        0.88\n",
            "                   flute          50        0.36        0.72\n",
            "           folding chair          50        0.62        0.84\n",
            "         football helmet          50        0.86        0.94\n",
            "                forklift          50         0.8        0.92\n",
            "                fountain          50        0.84        0.94\n",
            "            fountain pen          50        0.76        0.92\n",
            "         four-poster bed          50        0.78        0.94\n",
            "             freight car          50        0.96           1\n",
            "             French horn          50        0.76        0.92\n",
            "              frying pan          50        0.36        0.78\n",
            "                fur coat          50        0.84        0.96\n",
            "           garbage truck          50         0.9        0.98\n",
            "                gas mask          50        0.84        0.92\n",
            "                gas pump          50         0.9        0.98\n",
            "                  goblet          50        0.68        0.82\n",
            "                 go-kart          50         0.9           1\n",
            "               golf ball          50        0.84         0.9\n",
            "               golf cart          50        0.78        0.86\n",
            "                 gondola          50        0.98        0.98\n",
            "                    gong          50        0.74        0.92\n",
            "                    gown          50        0.62        0.96\n",
            "             grand piano          50         0.7        0.96\n",
            "              greenhouse          50         0.8        0.98\n",
            "                  grille          50        0.72         0.9\n",
            "           grocery store          50        0.66        0.94\n",
            "              guillotine          50        0.86        0.92\n",
            "                barrette          50        0.52        0.66\n",
            "              hair spray          50         0.5        0.74\n",
            "              half-track          50        0.78         0.9\n",
            "                  hammer          50        0.56        0.76\n",
            "                  hamper          50        0.64        0.84\n",
            "              hair dryer          50        0.56        0.74\n",
            "      hand-held computer          50        0.42        0.86\n",
            "            handkerchief          50        0.78        0.94\n",
            "         hard disk drive          50        0.76        0.84\n",
            "               harmonica          50         0.7        0.88\n",
            "                    harp          50        0.88        0.96\n",
            "               harvester          50        0.78           1\n",
            "                 hatchet          50        0.54        0.74\n",
            "                 holster          50        0.66        0.84\n",
            "            home theater          50        0.64        0.94\n",
            "               honeycomb          50        0.56        0.88\n",
            "                    hook          50         0.3         0.6\n",
            "              hoop skirt          50        0.64        0.86\n",
            "          horizontal bar          50        0.68        0.98\n",
            "     horse-drawn vehicle          50        0.88        0.94\n",
            "               hourglass          50        0.88        0.96\n",
            "                    iPod          50        0.76        0.94\n",
            "            clothes iron          50        0.82        0.88\n",
            "         jack-o'-lantern          50        0.98        0.98\n",
            "                   jeans          50        0.68        0.84\n",
            "                    jeep          50        0.72         0.9\n",
            "                 T-shirt          50        0.72        0.96\n",
            "           jigsaw puzzle          50        0.84        0.94\n",
            "         pulled rickshaw          50        0.86        0.94\n",
            "                joystick          50         0.8         0.9\n",
            "                  kimono          50        0.84        0.96\n",
            "                knee pad          50        0.62        0.88\n",
            "                    knot          50        0.66         0.8\n",
            "                lab coat          50         0.8        0.96\n",
            "                   ladle          50        0.36        0.64\n",
            "               lampshade          50        0.48        0.84\n",
            "         laptop computer          50        0.26        0.88\n",
            "              lawn mower          50        0.78        0.96\n",
            "                lens cap          50        0.46        0.72\n",
            "             paper knife          50        0.26         0.5\n",
            "                 library          50        0.54         0.9\n",
            "                lifeboat          50        0.92        0.98\n",
            "                 lighter          50        0.56        0.78\n",
            "               limousine          50        0.76        0.92\n",
            "             ocean liner          50        0.88        0.94\n",
            "                lipstick          50        0.74         0.9\n",
            "            slip-on shoe          50        0.74        0.92\n",
            "                  lotion          50         0.5        0.86\n",
            "                 speaker          50        0.52        0.68\n",
            "                   loupe          50        0.32        0.52\n",
            "                 sawmill          50        0.72         0.9\n",
            "        magnetic compass          50        0.52        0.82\n",
            "                mail bag          50        0.68        0.92\n",
            "                 mailbox          50        0.82        0.92\n",
            "                  tights          50        0.22        0.94\n",
            "               tank suit          50        0.24         0.9\n",
            "           manhole cover          50        0.96        0.98\n",
            "                  maraca          50        0.74         0.9\n",
            "                 marimba          50        0.84        0.94\n",
            "                    mask          50        0.44        0.82\n",
            "                   match          50        0.66         0.9\n",
            "                 maypole          50        0.96           1\n",
            "                    maze          50         0.8        0.96\n",
            "           measuring cup          50        0.54        0.76\n",
            "          medicine chest          50         0.6        0.84\n",
            "                megalith          50         0.8        0.92\n",
            "              microphone          50        0.52         0.7\n",
            "          microwave oven          50        0.48        0.72\n",
            "        military uniform          50        0.62        0.84\n",
            "                milk can          50        0.68        0.82\n",
            "                 minibus          50         0.7           1\n",
            "               miniskirt          50        0.46        0.76\n",
            "                 minivan          50        0.38         0.8\n",
            "                 missile          50         0.4        0.84\n",
            "                  mitten          50        0.76        0.88\n",
            "             mixing bowl          50         0.8        0.92\n",
            "             mobile home          50        0.54        0.78\n",
            "                 Model T          50        0.92        0.96\n",
            "                   modem          50        0.58        0.86\n",
            "               monastery          50        0.44         0.9\n",
            "                 monitor          50         0.4        0.86\n",
            "                   moped          50        0.56        0.94\n",
            "                  mortar          50        0.68        0.94\n",
            "     square academic cap          50         0.5        0.84\n",
            "                  mosque          50         0.9           1\n",
            "            mosquito net          50         0.9        0.98\n",
            "                 scooter          50         0.9        0.98\n",
            "           mountain bike          50        0.78        0.96\n",
            "                    tent          50        0.88        0.96\n",
            "          computer mouse          50        0.42        0.82\n",
            "               mousetrap          50        0.76        0.88\n",
            "              moving van          50         0.4        0.72\n",
            "                  muzzle          50         0.5        0.72\n",
            "                    nail          50        0.68        0.74\n",
            "              neck brace          50        0.56        0.68\n",
            "                necklace          50        0.86           1\n",
            "                  nipple          50         0.7        0.88\n",
            "       notebook computer          50        0.34        0.84\n",
            "                 obelisk          50         0.8        0.92\n",
            "                    oboe          50         0.6        0.84\n",
            "                 ocarina          50         0.8        0.86\n",
            "                odometer          50        0.96           1\n",
            "              oil filter          50        0.58        0.82\n",
            "                   organ          50        0.82         0.9\n",
            "            oscilloscope          50         0.9        0.96\n",
            "               overskirt          50         0.2         0.7\n",
            "            bullock cart          50         0.7        0.94\n",
            "             oxygen mask          50        0.46        0.84\n",
            "                  packet          50         0.5        0.78\n",
            "                  paddle          50        0.56        0.94\n",
            "            paddle wheel          50        0.86        0.96\n",
            "                 padlock          50        0.74        0.78\n",
            "              paintbrush          50        0.62         0.8\n",
            "                 pajamas          50        0.56        0.92\n",
            "                  palace          50        0.64        0.96\n",
            "               pan flute          50        0.84        0.86\n",
            "             paper towel          50        0.66        0.84\n",
            "               parachute          50        0.92        0.94\n",
            "           parallel bars          50        0.62        0.96\n",
            "              park bench          50        0.74         0.9\n",
            "           parking meter          50        0.84        0.92\n",
            "           passenger car          50         0.5        0.82\n",
            "                   patio          50        0.58        0.84\n",
            "                payphone          50        0.74        0.92\n",
            "                pedestal          50        0.52         0.9\n",
            "             pencil case          50        0.64        0.92\n",
            "        pencil sharpener          50        0.52        0.78\n",
            "                 perfume          50         0.7         0.9\n",
            "              Petri dish          50         0.6         0.8\n",
            "             photocopier          50        0.88        0.98\n",
            "                plectrum          50         0.7        0.84\n",
            "             Pickelhaube          50        0.72        0.86\n",
            "            picket fence          50        0.84        0.94\n",
            "            pickup truck          50        0.64        0.92\n",
            "                    pier          50        0.52        0.82\n",
            "              piggy bank          50        0.82        0.94\n",
            "             pill bottle          50        0.76        0.86\n",
            "                  pillow          50        0.76         0.9\n",
            "          ping-pong ball          50        0.84        0.88\n",
            "                pinwheel          50        0.76        0.88\n",
            "             pirate ship          50        0.76        0.94\n",
            "                 pitcher          50        0.46        0.84\n",
            "              hand plane          50        0.84        0.94\n",
            "             planetarium          50        0.88        0.98\n",
            "             plastic bag          50        0.36        0.62\n",
            "              plate rack          50        0.52        0.78\n",
            "                    plow          50        0.78        0.88\n",
            "                 plunger          50        0.42         0.7\n",
            "         Polaroid camera          50        0.84        0.92\n",
            "                    pole          50        0.38        0.74\n",
            "              police van          50        0.76        0.94\n",
            "                  poncho          50        0.58        0.86\n",
            "          billiard table          50         0.8        0.88\n",
            "             soda bottle          50        0.56        0.94\n",
            "                     pot          50        0.78        0.92\n",
            "          potter's wheel          50         0.9        0.94\n",
            "             power drill          50        0.42        0.72\n",
            "              prayer rug          50         0.7        0.86\n",
            "                 printer          50        0.54        0.86\n",
            "                  prison          50         0.7         0.9\n",
            "              projectile          50        0.28         0.9\n",
            "               projector          50        0.62        0.84\n",
            "             hockey puck          50        0.92        0.96\n",
            "            punching bag          50         0.6        0.68\n",
            "                   purse          50        0.42        0.78\n",
            "                   quill          50        0.68        0.84\n",
            "                   quilt          50        0.64         0.9\n",
            "                race car          50        0.72        0.92\n",
            "                  racket          50        0.72         0.9\n",
            "                radiator          50        0.66        0.76\n",
            "                   radio          50        0.64        0.92\n",
            "         radio telescope          50         0.9        0.96\n",
            "             rain barrel          50         0.8        0.98\n",
            "    recreational vehicle          50        0.84        0.94\n",
            "                    reel          50        0.72        0.82\n",
            "           reflex camera          50        0.72        0.92\n",
            "            refrigerator          50         0.7         0.9\n",
            "          remote control          50         0.7        0.88\n",
            "              restaurant          50         0.5        0.66\n",
            "                revolver          50        0.82           1\n",
            "                   rifle          50        0.38         0.7\n",
            "           rocking chair          50        0.62        0.84\n",
            "              rotisserie          50        0.88        0.92\n",
            "                  eraser          50        0.54        0.76\n",
            "              rugby ball          50        0.86        0.94\n",
            "                   ruler          50        0.68        0.86\n",
            "            running shoe          50        0.78        0.94\n",
            "                    safe          50        0.82        0.92\n",
            "              safety pin          50         0.4        0.62\n",
            "             salt shaker          50        0.66         0.9\n",
            "                  sandal          50        0.66        0.86\n",
            "                  sarong          50        0.64        0.86\n",
            "               saxophone          50        0.66        0.88\n",
            "                scabbard          50        0.76        0.92\n",
            "          weighing scale          50        0.58        0.78\n",
            "              school bus          50        0.92           1\n",
            "                schooner          50        0.84           1\n",
            "              scoreboard          50         0.9        0.96\n",
            "              CRT screen          50        0.14         0.7\n",
            "                   screw          50         0.9        0.98\n",
            "             screwdriver          50         0.3        0.58\n",
            "               seat belt          50        0.88        0.94\n",
            "          sewing machine          50        0.76         0.9\n",
            "                  shield          50        0.56        0.82\n",
            "              shoe store          50        0.78        0.96\n",
            "                   shoji          50         0.8        0.92\n",
            "         shopping basket          50        0.52        0.88\n",
            "           shopping cart          50        0.76        0.92\n",
            "                  shovel          50        0.62        0.84\n",
            "              shower cap          50         0.7        0.84\n",
            "          shower curtain          50        0.64        0.82\n",
            "                     ski          50        0.74        0.92\n",
            "                ski mask          50        0.72        0.88\n",
            "            sleeping bag          50        0.68         0.8\n",
            "              slide rule          50        0.72        0.88\n",
            "            sliding door          50        0.44        0.78\n",
            "            slot machine          50        0.94        0.98\n",
            "                 snorkel          50        0.86        0.98\n",
            "              snowmobile          50        0.88           1\n",
            "                snowplow          50        0.84        0.98\n",
            "          soap dispenser          50        0.56        0.86\n",
            "             soccer ball          50        0.86        0.96\n",
            "                    sock          50        0.62        0.76\n",
            " solar thermal collector          50        0.72        0.96\n",
            "                sombrero          50         0.6        0.84\n",
            "               soup bowl          50        0.56        0.94\n",
            "               space bar          50        0.34        0.88\n",
            "            space heater          50        0.52        0.74\n",
            "           space shuttle          50        0.82        0.96\n",
            "                 spatula          50         0.3         0.6\n",
            "               motorboat          50        0.86           1\n",
            "              spider web          50         0.7         0.9\n",
            "                 spindle          50        0.86        0.98\n",
            "              sports car          50         0.6        0.94\n",
            "               spotlight          50        0.26         0.6\n",
            "                   stage          50        0.68        0.86\n",
            "        steam locomotive          50        0.94           1\n",
            "     through arch bridge          50        0.84        0.96\n",
            "              steel drum          50        0.82         0.9\n",
            "             stethoscope          50         0.6        0.82\n",
            "                   scarf          50         0.5        0.92\n",
            "              stone wall          50        0.76         0.9\n",
            "               stopwatch          50        0.58         0.9\n",
            "                   stove          50        0.46        0.74\n",
            "                strainer          50        0.64        0.84\n",
            "                    tram          50        0.88        0.96\n",
            "               stretcher          50         0.6         0.8\n",
            "                   couch          50         0.8        0.96\n",
            "                   stupa          50        0.88        0.88\n",
            "               submarine          50        0.72        0.92\n",
            "                    suit          50         0.4        0.78\n",
            "                 sundial          50        0.58        0.74\n",
            "                sunglass          50        0.14        0.58\n",
            "              sunglasses          50        0.28        0.58\n",
            "               sunscreen          50        0.32         0.7\n",
            "       suspension bridge          50         0.6        0.94\n",
            "                     mop          50        0.74        0.92\n",
            "              sweatshirt          50        0.28        0.66\n",
            "                swimsuit          50        0.52        0.82\n",
            "                   swing          50        0.76        0.84\n",
            "                  switch          50        0.56        0.76\n",
            "                 syringe          50        0.62        0.82\n",
            "              table lamp          50         0.6        0.88\n",
            "                    tank          50         0.8        0.96\n",
            "             tape player          50        0.46        0.76\n",
            "                  teapot          50        0.84           1\n",
            "              teddy bear          50        0.82        0.94\n",
            "              television          50         0.6         0.9\n",
            "             tennis ball          50         0.7        0.94\n",
            "           thatched roof          50        0.88         0.9\n",
            "           front curtain          50         0.8        0.92\n",
            "                 thimble          50         0.6         0.8\n",
            "       threshing machine          50        0.56        0.88\n",
            "                  throne          50        0.72        0.82\n",
            "               tile roof          50        0.72        0.94\n",
            "                 toaster          50        0.66        0.84\n",
            "            tobacco shop          50        0.42         0.7\n",
            "             toilet seat          50        0.62        0.88\n",
            "                   torch          50        0.64        0.84\n",
            "              totem pole          50        0.92        0.98\n",
            "               tow truck          50        0.62        0.88\n",
            "               toy store          50         0.6        0.94\n",
            "                 tractor          50        0.76        0.98\n",
            "      semi-trailer truck          50        0.78        0.92\n",
            "                    tray          50        0.46        0.64\n",
            "             trench coat          50        0.54        0.72\n",
            "                tricycle          50        0.72        0.94\n",
            "                trimaran          50         0.7        0.98\n",
            "                  tripod          50        0.58        0.86\n",
            "          triumphal arch          50        0.92        0.98\n",
            "              trolleybus          50         0.9           1\n",
            "                trombone          50        0.54        0.88\n",
            "                     tub          50        0.24        0.82\n",
            "               turnstile          50        0.84        0.94\n",
            "     typewriter keyboard          50        0.68        0.98\n",
            "                umbrella          50        0.52         0.7\n",
            "                unicycle          50        0.74        0.96\n",
            "           upright piano          50        0.76         0.9\n",
            "          vacuum cleaner          50        0.62         0.9\n",
            "                    vase          50         0.5        0.78\n",
            "                   vault          50        0.76        0.92\n",
            "                  velvet          50         0.2        0.42\n",
            "         vending machine          50         0.9           1\n",
            "                vestment          50        0.54        0.82\n",
            "                 viaduct          50        0.78        0.86\n",
            "                  violin          50        0.68        0.78\n",
            "              volleyball          50        0.86           1\n",
            "             waffle iron          50        0.72        0.88\n",
            "              wall clock          50        0.54        0.88\n",
            "                  wallet          50        0.52         0.9\n",
            "                wardrobe          50        0.68        0.88\n",
            "       military aircraft          50         0.9        0.98\n",
            "                    sink          50        0.72        0.96\n",
            "         washing machine          50        0.78        0.94\n",
            "            water bottle          50        0.54        0.74\n",
            "               water jug          50        0.22        0.74\n",
            "             water tower          50         0.9        0.96\n",
            "             whiskey jug          50        0.64        0.74\n",
            "                 whistle          50        0.72        0.84\n",
            "                     wig          50        0.84         0.9\n",
            "           window screen          50        0.68         0.8\n",
            "            window shade          50        0.52        0.76\n",
            "             Windsor tie          50        0.22        0.66\n",
            "             wine bottle          50        0.42        0.82\n",
            "                    wing          50        0.54        0.96\n",
            "                     wok          50        0.46        0.82\n",
            "            wooden spoon          50        0.58         0.8\n",
            "                    wool          50        0.32        0.82\n",
            "        split-rail fence          50        0.74         0.9\n",
            "               shipwreck          50        0.84        0.96\n",
            "                    yawl          50        0.78        0.96\n",
            "                    yurt          50        0.84           1\n",
            "                 website          50        0.98           1\n",
            "              comic book          50        0.62         0.9\n",
            "               crossword          50        0.84        0.88\n",
            "            traffic sign          50        0.78         0.9\n",
            "           traffic light          50         0.8        0.94\n",
            "             dust jacket          50        0.72        0.94\n",
            "                    menu          50        0.82        0.96\n",
            "                   plate          50        0.44        0.88\n",
            "               guacamole          50         0.8        0.92\n",
            "                consomme          50        0.54        0.88\n",
            "                 hot pot          50        0.86        0.98\n",
            "                  trifle          50        0.92        0.98\n",
            "               ice cream          50        0.68        0.94\n",
            "                 ice pop          50        0.62        0.84\n",
            "                baguette          50        0.62        0.88\n",
            "                   bagel          50        0.64        0.92\n",
            "                 pretzel          50        0.72        0.88\n",
            "            cheeseburger          50         0.9           1\n",
            "                 hot dog          50        0.74        0.94\n",
            "           mashed potato          50        0.74         0.9\n",
            "                 cabbage          50        0.84        0.96\n",
            "                broccoli          50         0.9        0.96\n",
            "             cauliflower          50        0.82           1\n",
            "                zucchini          50        0.74         0.9\n",
            "        spaghetti squash          50         0.8        0.96\n",
            "            acorn squash          50        0.82        0.96\n",
            "        butternut squash          50         0.7        0.94\n",
            "                cucumber          50         0.6        0.96\n",
            "               artichoke          50        0.84        0.94\n",
            "             bell pepper          50        0.84        0.98\n",
            "                 cardoon          50        0.88        0.94\n",
            "                mushroom          50        0.38        0.92\n",
            "            Granny Smith          50         0.9        0.96\n",
            "              strawberry          50         0.6        0.88\n",
            "                  orange          50         0.7        0.92\n",
            "                   lemon          50        0.78        0.98\n",
            "                     fig          50        0.82        0.96\n",
            "               pineapple          50        0.86        0.96\n",
            "                  banana          50        0.84        0.96\n",
            "               jackfruit          50         0.9        0.98\n",
            "           custard apple          50        0.86        0.96\n",
            "             pomegranate          50        0.82        0.98\n",
            "                     hay          50         0.8        0.92\n",
            "               carbonara          50        0.88        0.94\n",
            "         chocolate syrup          50        0.46        0.84\n",
            "                   dough          50         0.4         0.6\n",
            "                meatloaf          50        0.58        0.84\n",
            "                   pizza          50        0.84        0.96\n",
            "                 pot pie          50        0.68         0.9\n",
            "                 burrito          50         0.8        0.98\n",
            "                red wine          50        0.54        0.82\n",
            "                espresso          50        0.64        0.88\n",
            "                     cup          50        0.38         0.7\n",
            "                  eggnog          50        0.38         0.7\n",
            "                     alp          50        0.54        0.88\n",
            "                  bubble          50         0.8        0.96\n",
            "                   cliff          50        0.64           1\n",
            "              coral reef          50        0.72        0.96\n",
            "                  geyser          50        0.94           1\n",
            "               lakeshore          50        0.54        0.88\n",
            "              promontory          50        0.58        0.94\n",
            "                   shoal          50         0.6        0.96\n",
            "                seashore          50        0.44        0.78\n",
            "                  valley          50        0.72        0.94\n",
            "                 volcano          50        0.78        0.96\n",
            "         baseball player          50        0.72        0.94\n",
            "              bridegroom          50        0.72        0.88\n",
            "             scuba diver          50         0.8           1\n",
            "                rapeseed          50        0.94        0.98\n",
            "                   daisy          50        0.96        0.98\n",
            "   yellow lady's slipper          50           1           1\n",
            "                    corn          50         0.4        0.88\n",
            "                   acorn          50        0.92        0.98\n",
            "                rose hip          50        0.92        0.98\n",
            "     horse chestnut seed          50        0.94        0.98\n",
            "            coral fungus          50        0.96        0.96\n",
            "                  agaric          50        0.82        0.94\n",
            "               gyromitra          50        0.98           1\n",
            "      stinkhorn mushroom          50         0.8        0.94\n",
            "              earth star          50        0.98           1\n",
            "        hen-of-the-woods          50         0.8        0.96\n",
            "                  bolete          50        0.74        0.94\n",
            "                     ear          50        0.48        0.94\n",
            "            toilet paper          50        0.36        0.68\n",
            "Speed: 0.1ms pre-process, 0.3ms inference, 0.0ms post-process per image at shape (1, 3, 224, 224)\n",
            "Results saved to \u001b[1mruns/val-cls/exp\u001b[0m\n"
          ]
        }
      ],
      "source": [
        "# Validate YOLOv5s on Imagenet val\n",
        "!python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224 --half"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZY2VXXXu74w5"
      },
      "source": [
        "# 3. Train\n",
        "\n",
        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://github.com/ultralytics/assets/raw/main/im/integrations-loop.png\"/></a></p>\n",
        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
        "<br><br>\n",
        "\n",
        "Train a YOLOv5s Classification model on the [Imagenette](https://image-net.org/) dataset with `--data imagenet`, starting from pretrained `--pretrained yolov5s-cls.pt`.\n",
        "\n",
        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
        "- **Training Results** are saved to `runs/train-cls/` with incrementing run directories, i.e. `runs/train-cls/exp2`, `runs/train-cls/exp3` etc.\n",
        "<br><br>\n",
        "\n",
        "A **Mosaic Dataloader** is used for training which combines 4 images into 1 mosaic.\n",
        "\n",
        "## Train on Custom Data with Roboflow 🌟 NEW\n",
        "\n",
        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
        "\n",
        "- Custom Training Example: [https://blog.roboflow.com/train-yolov5-classification-custom-data/](https://blog.roboflow.com/train-yolov5-classification-custom-data/?ref=ultralytics)\n",
        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KZiKUAjtARHAfZCXbJRv14-pOnIsBLPV?usp=sharing)\n",
        "<br>\n",
        "\n",
        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://user-images.githubusercontent.com/26833433/202802162-92e60571-ab58-4409-948d-b31fddcd3c6f.png\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "i3oKtE4g-aNn"
      },
      "outputs": [],
      "source": [
        "#@title Select YOLOv5 🚀 logger {run: 'auto'}\n",
        "logger = 'TensorBoard' #@param ['TensorBoard', 'Comet', 'ClearML']\n",
        "\n",
        "if logger == 'TensorBoard':\n",
        "  %load_ext tensorboard\n",
        "  %tensorboard --logdir runs/train\n",
        "elif logger == 'Comet':\n",
        "  %pip install -q comet_ml\n",
        "  import comet_ml; comet_ml.init()\n",
        "elif logger == 'ClearML':\n",
        "  import clearml; clearml.browser_login()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "1NcFxRcFdJ_O",
        "outputId": "77c8d487-16db-4073-b3ea-06cabf2e7766"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[34m\u001b[1mclassify/train: \u001b[0mmodel=yolov5s-cls.pt, data=imagenette160, epochs=5, batch_size=64, imgsz=224, nosave=False, cache=ram, device=, workers=8, project=runs/train-cls, name=exp, exist_ok=False, pretrained=True, optimizer=Adam, lr0=0.001, decay=5e-05, label_smoothing=0.1, cutoff=None, dropout=None, verbose=False, seed=0, local_rank=-1\n",
            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
            "YOLOv5 🚀 v7.0-3-g61ebf5e Python-3.7.15 torch-1.12.1+cu113 CUDA:0 (Tesla T4, 15110MiB)\n",
            "\n",
            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train-cls', view at http://localhost:6006/\n",
            "\n",
            "Dataset not found ⚠️, missing path /content/datasets/imagenette160, attempting download...\n",
            "Downloading https://github.com/ultralytics/yolov5/releases/download/v1.0/imagenette160.zip to /content/datasets/imagenette160.zip...\n",
            "100% 103M/103M [00:00<00:00, 347MB/s] \n",
            "Unzipping /content/datasets/imagenette160.zip...\n",
            "Dataset download success ✅ (3.3s), saved to \u001b[1m/content/datasets/imagenette160\u001b[0m\n",
            "\n",
            "\u001b[34m\u001b[1malbumentations: \u001b[0mRandomResizedCrop(p=1.0, height=224, width=224, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=1), HorizontalFlip(p=0.5), ColorJitter(p=0.5, brightness=[0.6, 1.4], contrast=[0.6, 1.4], saturation=[0.6, 1.4], hue=[0, 0]), Normalize(p=1.0, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), max_pixel_value=255.0), ToTensorV2(always_apply=True, p=1.0, transpose_mask=False)\n",
            "Model summary: 149 layers, 4185290 parameters, 4185290 gradients, 10.5 GFLOPs\n",
            "\u001b[34m\u001b[1moptimizer:\u001b[0m Adam(lr=0.001) with parameter groups 32 weight(decay=0.0), 33 weight(decay=5e-05), 33 bias\n",
            "Image sizes 224 train, 224 test\n",
            "Using 1 dataloader workers\n",
            "Logging results to \u001b[1mruns/train-cls/exp\u001b[0m\n",
            "Starting yolov5s-cls.pt training on imagenette160 dataset with 10 classes for 5 epochs...\n",
            "\n",
            "     Epoch   GPU_mem  train_loss    val_loss    top1_acc    top5_acc\n",
            "       1/5     1.47G        1.05       0.974       0.828       0.975: 100% 148/148 [00:38<00:00,  3.82it/s]\n",
            "       2/5     1.73G       0.895       0.766       0.911       0.994: 100% 148/148 [00:36<00:00,  4.03it/s]\n",
            "       3/5     1.73G        0.82       0.704       0.934       0.996: 100% 148/148 [00:35<00:00,  4.20it/s]\n",
            "       4/5     1.73G       0.766       0.664       0.951       0.998: 100% 148/148 [00:36<00:00,  4.05it/s]\n",
            "       5/5     1.73G       0.724       0.634       0.959       0.997: 100% 148/148 [00:37<00:00,  3.94it/s]\n",
            "\n",
            "Training complete (0.052 hours)\n",
            "Results saved to \u001b[1mruns/train-cls/exp\u001b[0m\n",
            "Predict:         python classify/predict.py --weights runs/train-cls/exp/weights/best.pt --source im.jpg\n",
            "Validate:        python classify/val.py --weights runs/train-cls/exp/weights/best.pt --data /content/datasets/imagenette160\n",
            "Export:          python export.py --weights runs/train-cls/exp/weights/best.pt --include onnx\n",
            "PyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', 'runs/train-cls/exp/weights/best.pt')\n",
            "Visualize:       https://netron.app\n",
            "\n"
          ]
        }
      ],
      "source": [
        "# Train YOLOv5s Classification on Imagenette160 for 3 epochs\n",
        "!python classify/train.py --model yolov5s-cls.pt --data imagenette160 --epochs 5 --img 224 --cache"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "15glLzbQx5u0"
      },
      "source": [
        "# 4. Visualize"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "nWOsI5wJR1o3"
      },
      "source": [
        "## Comet Logging and Visualization 🌟 NEW\n",
        "\n",
        "[Comet](https://www.comet.com/site/lp/yolov5-with-comet/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab) is now fully integrated with YOLOv5. Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab)! Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!\n",
        "\n",
        "Getting started is easy:\n",
        "```shell\n",
        "pip install comet_ml  # 1. install\n",
        "export COMET_API_KEY=<Your API Key>  # 2. paste API key\n",
        "python train.py --img 640 --epochs 3 --data coco128.yaml --weights yolov5s.pt  # 3. train\n",
        "```\n",
        "To learn more about all of the supported Comet features for this integration, check out the [Comet Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/comet). If you'd like to learn more about Comet, head over to our [documentation](https://www.comet.com/docs/v2/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=yolov5_colab). Get started by trying out the Comet Colab Notebook:\n",
        "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)\n",
        "\n",
        "<a href=\"https://bit.ly/yolov5-readme-comet2\">\n",
        "<img alt=\"Comet Dashboard\" src=\"https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png\" width=\"1280\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Lay2WsTjNJzP"
      },
      "source": [
        "## ClearML Logging and Automation 🌟 NEW\n",
        "\n",
        "[ClearML](https://cutt.ly/yolov5-notebook-clearml) is completely integrated into YOLOv5 to track your experimentation, manage dataset versions and even remotely execute training runs. To enable ClearML (check cells above):\n",
        "\n",
        "- `pip install clearml`\n",
        "- run `clearml-init` to connect to a ClearML server (**deploy your own [open-source server](https://github.com/allegroai/clearml-server)**, or use our [free hosted server](https://cutt.ly/yolov5-notebook-clearml))\n",
        "\n",
        "You'll get all the great expected features from an experiment manager: live updates, model upload, experiment comparison etc. but ClearML also tracks uncommitted changes and installed packages for example. Thanks to that ClearML Tasks (which is what we call experiments) are also reproducible on different machines! With only 1 extra line, we can schedule a YOLOv5 training task on a queue to be executed by any number of ClearML Agents (workers).\n",
        "\n",
        "You can use ClearML Data to version your dataset and then pass it to YOLOv5 simply using its unique ID. This will help you keep track of your data without adding extra hassle. Explore the [ClearML Tutorial](https://github.com/ultralytics/yolov5/tree/master/utils/loggers/clearml) for details!\n",
        "\n",
        "<a href=\"https://cutt.ly/yolov5-notebook-clearml\">\n",
        "<img alt=\"ClearML Experiment Management UI\" src=\"https://github.com/thepycoder/clearml_screenshots/raw/main/scalars.jpg\" width=\"1280\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-WPvRbS5Swl6"
      },
      "source": [
        "## Local Logging\n",
        "\n",
        "Training results are automatically logged with [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) loggers to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc.\n",
        "\n",
        "This directory contains train and val statistics, mosaics, labels, predictions and augmentated mosaics, as well as metrics and charts including precision-recall (PR) curves and confusion matrices. \n",
        "\n",
        "<img alt=\"Local logging results\" src=\"https://user-images.githubusercontent.com/26833433/183222430-e1abd1b7-782c-4cde-b04d-ad52926bf818.jpg\" width=\"1280\"/>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Zelyeqbyt3GD"
      },
      "source": [
        "# Environments\n",
        "\n",
        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
        "\n",
        "- **Notebooks** with free GPU: <a href=\"https://bit.ly/yolov5-paperspace-notebook\"><img src=\"https://assets.paperspace.io/img/gradient-badge.svg\" alt=\"Run on Gradient\"></a> <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
        "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6Qu7Iesl0p54"
      },
      "source": [
        "# Status\n",
        "\n",
        "![YOLOv5 CI](https://github.com/ultralytics/yolov5/actions/workflows/ci-testing.yml/badge.svg)\n",
        "\n",
        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on macOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "IEijrePND_2I"
      },
      "source": [
        "# Appendix\n",
        "\n",
        "Additional content below."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "GMusP4OAxFu6"
      },
      "outputs": [],
      "source": [
        "# YOLOv5 PyTorch HUB Inference (DetectionModels only)\n",
        "import torch\n",
        "\n",
        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # yolov5n - yolov5x6 or custom\n",
        "im = 'https://ultralytics.com/images/zidane.jpg'  # file, Path, PIL.Image, OpenCV, nparray, list\n",
        "results = model(im)  # inference\n",
        "results.print()  # or .show(), .save(), .crop(), .pandas(), etc."
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "name": "YOLOv5 Classification Tutorial",
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3 (ipykernel)",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.7.12"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}