Spaces:
Runtime error
Runtime error
File size: 15,520 Bytes
a1b8e4d 6ab078b a1b8e4d 1447041 a1b8e4d 6ab078b a1b8e4d b78235c a1b8e4d 6ab078b a1b8e4d c0391de 3d6ce7e a1b8e4d 1447041 c157080 a1b8e4d e1fdf6f a1b8e4d 1447041 a1b8e4d 1447041 a1b8e4d 58e2d1d 1447041 a1b8e4d 1951044 b0450e6 a1b8e4d 6ab078b 1447041 c157080 1447041 a1b8e4d 1447041 a1b8e4d 1447041 9824db8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
#@title Prepare the Concepts Library to be used
import requests
import os
import gradio as gr
import wget
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from huggingface_hub import HfApi
from transformers import CLIPTextModel, CLIPTokenizer
import html
from share_btn import community_icon_html, loading_icon_html, share_js
api = HfApi()
models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1)
models = []
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True, revision="fp16", torch_dtype=torch.float16).to("cuda")
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
embeds.to(dtype)
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
i = 1
while(num_added_tokens == 0):
print(f"The tokenizer already contains the token {token}.")
token = f"{token[:-1]}-{i}>"
print(f"Attempting to add the token {token}.")
num_added_tokens = tokenizer.add_tokens(token)
i+=1
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
return token
print("Setting up the public library")
for model in models_list:
model_content = {}
model_id = model.modelId
model_content["id"] = model_id
embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin"
os.makedirs(model_id,exist_ok = True)
if not os.path.exists(f"{model_id}/learned_embeds.bin"):
try:
wget.download(embeds_url, out=model_id)
except:
continue
token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt"
response = requests.get(token_identifier)
token_name = response.text
concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt"
response = requests.get(concept_type)
concept_name = response.text
model_content["concept_type"] = concept_name
images = []
for i in range(4):
url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg"
image_download = requests.get(url)
url_code = image_download.status_code
if(url_code == 200):
file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image
file.write(image_download.content) ## Saves file content
file.close()
images.append(f"{model_id}/{i}.jpeg")
model_content["images"] = images
learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name)
model_content["token"] = learned_token
models.append(model_content)
#@title Run the app to navigate around [the Library](https://huggingface.co/sd-concepts-library)
#@markdown Click the `Running on public URL:` result to run the Gradio app
SELECT_LABEL = "Select concept"
def assembleHTML(model):
html_gallery = ''
html_gallery = html_gallery+'''
<div class="flex gr-gap gr-form-gap row gap-4 w-full flex-wrap" id="main_row">
'''
for model in models:
html_gallery = html_gallery+f'''
<div class="gr-block gr-box relative w-full overflow-hidden border-solid border border-gray-200 gr-panel">
<div class="output-markdown gr-prose" style="max-width: 100%;">
<h3>
<a href="https://huggingface.co/{model["id"]}" target="_blank">
<code>{html.escape(model["token"])}</code>
</a>
</h3>
</div>
<div id="gallery" class="gr-block gr-box relative w-full overflow-hidden border-solid border border-gray-200">
<div class="wrap svelte-17ttdjv opacity-0"></div>
<div class="absolute left-0 top-0 py-1 px-2 rounded-br-lg shadow-sm text-xs text-gray-500 flex items-center pointer-events-none bg-white z-20 border-b border-r border-gray-100 dark:bg-gray-900">
<span class="mr-2 h-[12px] w-[12px] opacity-80">
<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="1.5" stroke-linecap="round" stroke-linejoin="round" class="feather feather-image">
<rect x="3" y="3" width="18" height="18" rx="2" ry="2"></rect>
<circle cx="8.5" cy="8.5" r="1.5"></circle>
<polyline points="21 15 16 10 5 21"></polyline>
</svg>
</span> {model["concept_type"]}
</div>
<div class="overflow-y-auto h-full p-2" style="position: relative;">
<div class="grid gap-2 grid-cols-2 sm:grid-cols-2 md:grid-cols-2 lg:grid-cols-2 xl:grid-cols-2 2xl:grid-cols-2 svelte-1g9btlg pt-6">
'''
for image in model["images"]:
html_gallery = html_gallery + f'''
<button class="gallery-item svelte-1g9btlg">
<img alt="" loading="lazy" class="h-full w-full overflow-hidden object-contain" src="file/{image}">
</button>
'''
html_gallery = html_gallery+'''
</div>
<iframe style="display: block; position: absolute; top: 0; left: 0; width: 100%; height: 100%; overflow: hidden; border: 0; opacity: 0; pointer-events: none; z-index: -1;" aria-hidden="true" tabindex="-1" src="about:blank"></iframe>
</div>
</div>
</div>
'''
html_gallery = html_gallery+'''
</div>
'''
return html_gallery
def title_block(title, id):
return gr.Markdown(f"### [`{title}`](https://huggingface.co/{id})")
def image_block(image_list, concept_type):
return gr.Gallery(
label=concept_type, value=image_list, elem_id="gallery"
).style(grid=[2], height="auto")
def checkbox_block():
checkbox = gr.Checkbox(label=SELECT_LABEL).style(container=False)
return checkbox
def infer(text):
with autocast("cuda"):
images_list = pipe(
[text]*2,
num_inference_steps=50,
guidance_scale=7.5
)
output_images = []
for i, image in enumerate(images_list["sample"]):
output_images.append(image)
return output_images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
# idetnical to `infer` function without gradio state updates for share btn
def infer_examples(text):
with autocast("cuda"):
images_list = pipe(
[text]*2,
num_inference_steps=50,
guidance_scale=7.5
)
output_images = []
for i, image in enumerate(images_list["sample"]):
output_images.append(image)
return output_images
css = '''
.gradio-container {font-family: 'IBM Plex Sans', sans-serif}
#top_title{margin-bottom: .5em}
#top_title h2{margin-bottom: 0; text-align: center}
/*#main_row{flex-wrap: wrap; gap: 1em; max-height: 550px; overflow-y: scroll; flex-direction: row}*/
#component-3{height: 760px; overflow: auto}
#component-9{position: sticky;top: 0;align-self: flex-start;}
@media (min-width: 768px){#main_row > div{flex: 1 1 32%; margin-left: 0 !important}}
.gr-prose code::before, .gr-prose code::after {content: "" !important}
::-webkit-scrollbar {width: 10px}
::-webkit-scrollbar-track {background: #f1f1f1}
::-webkit-scrollbar-thumb {background: #888}
::-webkit-scrollbar-thumb:hover {background: #555}
.gr-button {white-space: nowrap}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#prompt_input{flex: 1 3 auto; width: auto !important;}
#prompt_area{margin-bottom: .75em}
#prompt_area > div:first-child{flex: 1 3 auto}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
'''
examples = ["a <cat-toy> in <madhubani-art> style", "a <line-art> style mecha robot", "a piano being played by <bonzi>", "Candid photo of <cheburashka>, high resolution photo, trending on artstation, interior design"]
with gr.Blocks(css=css) as demo:
state = gr.Variable({
'selected': -1
})
state = {}
def update_state(i):
global checkbox_states
if(checkbox_states[i]):
checkbox_states[i] = False
state[i] = False
else:
state[i] = True
checkbox_states[i] = True
gr.HTML('''
<div style="text-align: center; max-width: 720px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<svg
width="0.65em"
height="0.65em"
viewBox="0 0 115 115"
fill="none"
xmlns="http://www.w3.org/2000/svg"
>
<rect width="23" height="23" fill="white"></rect>
<rect y="69" width="23" height="23" fill="white"></rect>
<rect x="23" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="46" width="23" height="23" fill="white"></rect>
<rect x="46" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" width="23" height="23" fill="black"></rect>
<rect x="69" y="69" width="23" height="23" fill="black"></rect>
<rect x="92" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="69" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="115" y="46" width="23" height="23" fill="white"></rect>
<rect x="115" y="115" width="23" height="23" fill="white"></rect>
<rect x="115" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="92" y="46" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="92" y="69" width="23" height="23" fill="white"></rect>
<rect x="69" y="46" width="23" height="23" fill="white"></rect>
<rect x="69" y="115" width="23" height="23" fill="white"></rect>
<rect x="69" y="69" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="46" y="46" width="23" height="23" fill="black"></rect>
<rect x="46" y="115" width="23" height="23" fill="black"></rect>
<rect x="46" y="69" width="23" height="23" fill="black"></rect>
<rect x="23" y="46" width="23" height="23" fill="#D9D9D9"></rect>
<rect x="23" y="115" width="23" height="23" fill="#AEAEAE"></rect>
<rect x="23" y="69" width="23" height="23" fill="black"></rect>
</svg>
<h1 style="font-weight: 900; margin-bottom: 7px;">
Stable Diffusion Conceptualizer
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Navigate through community created concepts and styles via Stable Diffusion Textual Inversion and pick yours for inference.
To train your own concepts and contribute to the library <a style="text-decoration: underline" href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb">check out this notebook</a>.
</p>
</div>
''')
with gr.Row():
with gr.Column():
gr.Markdown(f"### Navigate {len(models)}+ Textual-Inversion community trained concepts")
with gr.Row():
image_blocks = []
#for i, model in enumerate(models):
with gr.Box().style(border=None):
gr.HTML(assembleHTML(models))
#title_block(model["token"], model["id"])
#image_blocks.append(image_block(model["images"], model["concept_type"]))
with gr.Column():
with gr.Box():
with gr.Row(elem_id="prompt_area").style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input"
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
full_width=False,
)
btn = gr.Button("Run",elem_id="run_btn").style(
margin=False,
rounded=(False, True, True, False),
full_width=False,
)
with gr.Row().style():
infer_outputs = gr.Gallery(show_label=False, elem_id="generated-gallery").style(grid=[2], height="512px")
with gr.Row():
gr.HTML("<p style=\"font-size: 95%;margin-top: .75em\">Prompting may not work as you are used to. <code>objects</code> may need the concept added at the end, <code>styles</code> may work better at the beginning. You can navigate on <a href='https://lexica.art'>lexica.art</a> to get inspired on prompts</p>")
with gr.Row():
gr.Examples(examples=examples, fn=infer_examples, inputs=[text], outputs=infer_outputs, cache_examples=True)
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
checkbox_states = {}
inputs = [text]
btn.click(
infer,
inputs=inputs,
outputs=[infer_outputs, community_icon, loading_icon, share_button]
)
share_button.click(
None,
[],
[],
_js=share_js,
)
demo.queue(max_size=20).launch() |