Spaces:
Running
on
A10G
Running
on
A10G
File size: 9,218 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
import json
import random
import cv2
from PIL import Image
import numpy as np
import torch
import torchvision.transforms as transforms
from utils.file_client import FileClient
from utils.img_util import imfrombytes
from utils.flow_util import resize_flow, flowread
from core.utils import (create_random_shape_with_random_motion, Stack,
ToTorchFormatTensor, GroupRandomHorizontalFlip,GroupRandomHorizontalFlowFlip)
class TrainDataset(torch.utils.data.Dataset):
def __init__(self, args: dict):
self.args = args
self.video_root = args['video_root']
self.flow_root = args['flow_root']
self.num_local_frames = args['num_local_frames']
self.num_ref_frames = args['num_ref_frames']
self.size = self.w, self.h = (args['w'], args['h'])
self.load_flow = args['load_flow']
if self.load_flow:
assert os.path.exists(self.flow_root)
json_path = os.path.join('./datasets', args['name'], 'train.json')
with open(json_path, 'r') as f:
self.video_train_dict = json.load(f)
self.video_names = sorted(list(self.video_train_dict.keys()))
# self.video_names = sorted(os.listdir(self.video_root))
self.video_dict = {}
self.frame_dict = {}
for v in self.video_names:
frame_list = sorted(os.listdir(os.path.join(self.video_root, v)))
v_len = len(frame_list)
if v_len > self.num_local_frames + self.num_ref_frames:
self.video_dict[v] = v_len
self.frame_dict[v] = frame_list
self.video_names = list(self.video_dict.keys()) # update names
self._to_tensors = transforms.Compose([
Stack(),
ToTorchFormatTensor(),
])
self.file_client = FileClient('disk')
def __len__(self):
return len(self.video_names)
def _sample_index(self, length, sample_length, num_ref_frame=3):
complete_idx_set = list(range(length))
pivot = random.randint(0, length - sample_length)
local_idx = complete_idx_set[pivot:pivot + sample_length]
remain_idx = list(set(complete_idx_set) - set(local_idx))
ref_index = sorted(random.sample(remain_idx, num_ref_frame))
return local_idx + ref_index
def __getitem__(self, index):
video_name = self.video_names[index]
# create masks
all_masks = create_random_shape_with_random_motion(
self.video_dict[video_name], imageHeight=self.h, imageWidth=self.w)
# create sample index
selected_index = self._sample_index(self.video_dict[video_name],
self.num_local_frames,
self.num_ref_frames)
# read video frames
frames = []
masks = []
flows_f, flows_b = [], []
for idx in selected_index:
frame_list = self.frame_dict[video_name]
img_path = os.path.join(self.video_root, video_name, frame_list[idx])
img_bytes = self.file_client.get(img_path, 'img')
img = imfrombytes(img_bytes, float32=False)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, self.size, interpolation=cv2.INTER_LINEAR)
img = Image.fromarray(img)
frames.append(img)
masks.append(all_masks[idx])
if len(frames) <= self.num_local_frames-1 and self.load_flow:
current_n = frame_list[idx][:-4]
next_n = frame_list[idx+1][:-4]
flow_f_path = os.path.join(self.flow_root, video_name, f'{current_n}_{next_n}_f.flo')
flow_b_path = os.path.join(self.flow_root, video_name, f'{next_n}_{current_n}_b.flo')
flow_f = flowread(flow_f_path, quantize=False)
flow_b = flowread(flow_b_path, quantize=False)
flow_f = resize_flow(flow_f, self.h, self.w)
flow_b = resize_flow(flow_b, self.h, self.w)
flows_f.append(flow_f)
flows_b.append(flow_b)
if len(frames) == self.num_local_frames: # random reverse
if random.random() < 0.5:
frames.reverse()
masks.reverse()
if self.load_flow:
flows_f.reverse()
flows_b.reverse()
flows_ = flows_f
flows_f = flows_b
flows_b = flows_
if self.load_flow:
frames, flows_f, flows_b = GroupRandomHorizontalFlowFlip()(frames, flows_f, flows_b)
else:
frames = GroupRandomHorizontalFlip()(frames)
# normalizate, to tensors
frame_tensors = self._to_tensors(frames) * 2.0 - 1.0
mask_tensors = self._to_tensors(masks)
if self.load_flow:
flows_f = np.stack(flows_f, axis=-1) # H W 2 T-1
flows_b = np.stack(flows_b, axis=-1)
flows_f = torch.from_numpy(flows_f).permute(3, 2, 0, 1).contiguous().float()
flows_b = torch.from_numpy(flows_b).permute(3, 2, 0, 1).contiguous().float()
# img [-1,1] mask [0,1]
if self.load_flow:
return frame_tensors, mask_tensors, flows_f, flows_b, video_name
else:
return frame_tensors, mask_tensors, 'None', 'None', video_name
class TestDataset(torch.utils.data.Dataset):
def __init__(self, args):
self.args = args
self.size = self.w, self.h = args['size']
self.video_root = args['video_root']
self.mask_root = args['mask_root']
self.flow_root = args['flow_root']
self.load_flow = args['load_flow']
if self.load_flow:
assert os.path.exists(self.flow_root)
self.video_names = sorted(os.listdir(self.mask_root))
self.video_dict = {}
self.frame_dict = {}
for v in self.video_names:
frame_list = sorted(os.listdir(os.path.join(self.video_root, v)))
v_len = len(frame_list)
self.video_dict[v] = v_len
self.frame_dict[v] = frame_list
self._to_tensors = transforms.Compose([
Stack(),
ToTorchFormatTensor(),
])
self.file_client = FileClient('disk')
def __len__(self):
return len(self.video_names)
def __getitem__(self, index):
video_name = self.video_names[index]
selected_index = list(range(self.video_dict[video_name]))
# read video frames
frames = []
masks = []
flows_f, flows_b = [], []
for idx in selected_index:
frame_list = self.frame_dict[video_name]
frame_path = os.path.join(self.video_root, video_name, frame_list[idx])
img_bytes = self.file_client.get(frame_path, 'input')
img = imfrombytes(img_bytes, float32=False)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, self.size, interpolation=cv2.INTER_LINEAR)
img = Image.fromarray(img)
frames.append(img)
mask_path = os.path.join(self.mask_root, video_name, str(idx).zfill(5) + '.png')
mask = Image.open(mask_path).resize(self.size, Image.NEAREST).convert('L')
# origin: 0 indicates missing. now: 1 indicates missing
mask = np.asarray(mask)
m = np.array(mask > 0).astype(np.uint8)
m = cv2.dilate(m,
cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3)),
iterations=4)
mask = Image.fromarray(m * 255)
masks.append(mask)
if len(frames) <= len(selected_index)-1 and self.load_flow:
current_n = frame_list[idx][:-4]
next_n = frame_list[idx+1][:-4]
flow_f_path = os.path.join(self.flow_root, video_name, f'{current_n}_{next_n}_f.flo')
flow_b_path = os.path.join(self.flow_root, video_name, f'{next_n}_{current_n}_b.flo')
flow_f = flowread(flow_f_path, quantize=False)
flow_b = flowread(flow_b_path, quantize=False)
flow_f = resize_flow(flow_f, self.h, self.w)
flow_b = resize_flow(flow_b, self.h, self.w)
flows_f.append(flow_f)
flows_b.append(flow_b)
# normalizate, to tensors
frames_PIL = [np.array(f).astype(np.uint8) for f in frames]
frame_tensors = self._to_tensors(frames) * 2.0 - 1.0
mask_tensors = self._to_tensors(masks)
if self.load_flow:
flows_f = np.stack(flows_f, axis=-1) # H W 2 T-1
flows_b = np.stack(flows_b, axis=-1)
flows_f = torch.from_numpy(flows_f).permute(3, 2, 0, 1).contiguous().float()
flows_b = torch.from_numpy(flows_b).permute(3, 2, 0, 1).contiguous().float()
if self.load_flow:
return frame_tensors, mask_tensors, flows_f, flows_b, video_name, frames_PIL
else:
return frame_tensors, mask_tensors, 'None', 'None', video_name |