Spaces:
Running
on
A10G
Running
on
A10G
File size: 13,269 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
# -*- coding: utf-8 -*-
import os
import sys
import cv2
import numpy as np
import scipy.ndimage
from PIL import Image
from tqdm import tqdm
import torch
import torchvision
from model.modules.flow_comp_raft import RAFT_bi
from model.recurrent_flow_completion import RecurrentFlowCompleteNet
from model.propainter import InpaintGenerator
from core.utils import to_tensors
import warnings
warnings.filterwarnings("ignore")
def imwrite(img, file_path, params=None, auto_mkdir=True):
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
return cv2.imwrite(file_path, img, params)
def resize_frames(frames, size=None):
if size is not None:
out_size = size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
frames = [f.resize(process_size) for f in frames]
else:
out_size = frames[0].size
process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8)
if not out_size == process_size:
frames = [f.resize(process_size) for f in frames]
return frames, process_size, out_size
def read_frame_from_videos(frame_root):
if frame_root.endswith(('mp4', 'mov', 'avi', 'MP4', 'MOV', 'AVI')): # input video path
video_name = os.path.basename(frame_root)[:-4]
vframes, aframes, info = torchvision.io.read_video(filename=frame_root, pts_unit='sec') # RGB
frames = list(vframes.numpy())
frames = [Image.fromarray(f) for f in frames]
fps = info['video_fps']
else:
video_name = os.path.basename(frame_root)
frames = []
fr_lst = sorted(os.listdir(frame_root))
for fr in fr_lst:
frame = cv2.imread(os.path.join(frame_root, fr))
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frames.append(frame)
fps = None
size = frames[0].size
return frames, fps, size, video_name
def binary_mask(mask, th=0.1):
mask[mask>th] = 1
mask[mask<=th] = 0
return mask
def extrapolation(video_ori, scale):
"""Prepares the data for video outpainting.
"""
nFrame = len(video_ori)
imgW, imgH = video_ori[0].size
# Defines new FOV.
imgH_extr = int(scale[0] * imgH)
imgW_extr = int(scale[1] * imgW)
imgH_extr = imgH_extr - imgH_extr % 8
imgW_extr = imgW_extr - imgW_extr % 8
H_start = int((imgH_extr - imgH) / 2)
W_start = int((imgW_extr - imgW) / 2)
# Extrapolates the FOV for video.
frames = []
for v in video_ori:
frame = np.zeros(((imgH_extr, imgW_extr, 3)), dtype=np.uint8)
frame[H_start: H_start + imgH, W_start: W_start + imgW, :] = v
frames.append(Image.fromarray(frame))
# Generates the mask for missing region.
masks_dilated = []
flow_masks = []
dilate_h = 4 if H_start > 10 else 0
dilate_w = 4 if W_start > 10 else 0
mask = np.ones(((imgH_extr, imgW_extr)), dtype=np.uint8)
mask[H_start+dilate_h: H_start+imgH-dilate_h,
W_start+dilate_w: W_start+imgW-dilate_w] = 0
flow_masks.append(Image.fromarray(mask * 255))
mask[H_start: H_start+imgH, W_start: W_start+imgW] = 0
masks_dilated.append(Image.fromarray(mask * 255))
flow_masks = flow_masks * nFrame
masks_dilated = masks_dilated * nFrame
return frames, flow_masks, masks_dilated, (imgW_extr, imgH_extr)
def get_ref_index(mid_neighbor_id, neighbor_ids, length, ref_stride=10, ref_num=-1):
ref_index = []
if ref_num == -1:
for i in range(0, length, ref_stride):
if i not in neighbor_ids:
ref_index.append(i)
else:
start_idx = max(0, mid_neighbor_id - ref_stride * (ref_num // 2))
end_idx = min(length, mid_neighbor_id + ref_stride * (ref_num // 2))
for i in range(start_idx, end_idx, ref_stride):
if i not in neighbor_ids:
if len(ref_index) > ref_num:
break
ref_index.append(i)
return ref_index
def read_mask_demo(masks, length, size, flow_mask_dilates=8, mask_dilates=5):
masks_img = []
masks_dilated = []
flow_masks = []
for mp in masks:
masks_img.append(Image.fromarray(mp.astype('uint8')))
for mask_img in masks_img:
if size is not None:
mask_img = mask_img.resize(size, Image.NEAREST)
mask_img = np.array(mask_img.convert('L'))
# Dilate 8 pixel so that all known pixel is trustworthy
if flow_mask_dilates > 0:
flow_mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=flow_mask_dilates).astype(np.uint8)
else:
flow_mask_img = binary_mask(mask_img).astype(np.uint8)
flow_masks.append(Image.fromarray(flow_mask_img * 255))
if mask_dilates > 0:
mask_img = scipy.ndimage.binary_dilation(mask_img, iterations=mask_dilates).astype(np.uint8)
else:
mask_img = binary_mask(mask_img).astype(np.uint8)
masks_dilated.append(Image.fromarray(mask_img * 255))
if len(masks_img) == 1:
flow_masks = flow_masks * length
masks_dilated = masks_dilated * length
return flow_masks, masks_dilated
class ProInpainter:
def __init__(self, propainter_checkpoint, raft_checkpoint, flow_completion_checkpoint, device="cuda:0", use_half=True):
self.device = device
self.use_half = use_half
##############################################
# set up RAFT and flow competition model
##############################################
self.fix_raft = RAFT_bi(raft_checkpoint, self.device)
self.fix_flow_complete = RecurrentFlowCompleteNet(flow_completion_checkpoint)
for p in self.fix_flow_complete.parameters():
p.requires_grad = False
self.fix_flow_complete.to(self.device)
self.fix_flow_complete.eval()
##############################################
# set up ProPainter model
##############################################
self.model = InpaintGenerator(model_path=propainter_checkpoint).to(self.device)
self.model.eval()
if self.use_half:
self.fix_flow_complete = self.fix_flow_complete.half()
self.model = self.model.half()
def inpaint(self, npframes, masks, ratio=1.0, dilate_radius=4, raft_iter=20, subvideo_length=80, neighbor_length=10, ref_stride=10):
"""
Perform Inpainting for video subsets
Output:
inpainted_frames: numpy array, T, H, W, 3
"""
frames = []
for i in range(len(npframes)):
frames.append(Image.fromarray(npframes[i].astype('uint8'), mode="RGB"))
del npframes
size = frames[0].size
# The ouput size should be divided by 2 so that it can encoded by libx264
size = (int(ratio*size[0])//2*2, int(ratio*size[1])//2*2)
frames_len = len(frames)
frames, size, out_size = resize_frames(frames, size)
flow_masks, masks_dilated = read_mask_demo(masks, frames_len, size, dilate_radius, dilate_radius)
w, h = size
frames_inp = [np.array(f).astype(np.uint8) for f in frames]
frames = to_tensors()(frames).unsqueeze(0) * 2 - 1
flow_masks = to_tensors()(flow_masks).unsqueeze(0)
masks_dilated = to_tensors()(masks_dilated).unsqueeze(0)
frames, flow_masks, masks_dilated = frames.to(self.device), flow_masks.to(self.device), masks_dilated.to(self.device)
##############################################
# ProPainter inference
##############################################
video_length = frames.size(1)
with torch.no_grad():
# ---- compute flow ----
if frames.size(-1) <= 640:
short_clip_len = 12
elif frames.size(-1) <= 720:
short_clip_len = 8
elif frames.size(-1) <= 1280:
short_clip_len = 4
else:
short_clip_len = 2
# use fp32 for RAFT
if frames.size(1) > short_clip_len:
gt_flows_f_list, gt_flows_b_list = [], []
for f in range(0, video_length, short_clip_len):
end_f = min(video_length, f + short_clip_len)
if f == 0:
flows_f, flows_b = self.fix_raft(frames[:,f:end_f], iters=raft_iter)
else:
flows_f, flows_b = self.fix_raft(frames[:,f-1:end_f], iters=raft_iter)
gt_flows_f_list.append(flows_f)
gt_flows_b_list.append(flows_b)
torch.cuda.empty_cache()
gt_flows_f = torch.cat(gt_flows_f_list, dim=1)
gt_flows_b = torch.cat(gt_flows_b_list, dim=1)
gt_flows_bi = (gt_flows_f, gt_flows_b)
else:
gt_flows_bi = self.fix_raft(frames, iters=raft_iter)
torch.cuda.empty_cache()
if self.use_half:
frames, flow_masks, masks_dilated = frames.half(), flow_masks.half(), masks_dilated.half()
gt_flows_bi = (gt_flows_bi[0].half(), gt_flows_bi[1].half())
# ---- complete flow ----
flow_length = gt_flows_bi[0].size(1)
if flow_length > subvideo_length:
pred_flows_f, pred_flows_b = [], []
pad_len = 5
for f in range(0, flow_length, subvideo_length):
s_f = max(0, f - pad_len)
e_f = min(flow_length, f + subvideo_length + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(flow_length, f + subvideo_length)
pred_flows_bi_sub, _ = self.fix_flow_complete.forward_bidirect_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
flow_masks[:, s_f:e_f+1])
pred_flows_bi_sub = self.fix_flow_complete.combine_flow(
(gt_flows_bi[0][:, s_f:e_f], gt_flows_bi[1][:, s_f:e_f]),
pred_flows_bi_sub,
flow_masks[:, s_f:e_f+1])
pred_flows_f.append(pred_flows_bi_sub[0][:, pad_len_s:e_f-s_f-pad_len_e])
pred_flows_b.append(pred_flows_bi_sub[1][:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
pred_flows_f = torch.cat(pred_flows_f, dim=1)
pred_flows_b = torch.cat(pred_flows_b, dim=1)
pred_flows_bi = (pred_flows_f, pred_flows_b)
else:
pred_flows_bi, _ = self.fix_flow_complete.forward_bidirect_flow(gt_flows_bi, flow_masks)
pred_flows_bi = self.fix_flow_complete.combine_flow(gt_flows_bi, pred_flows_bi, flow_masks)
torch.cuda.empty_cache()
# ---- image propagation ----
masked_frames = frames * (1 - masks_dilated)
subvideo_length_img_prop = min(100, subvideo_length) # ensure a minimum of 100 frames for image propagation
if video_length > subvideo_length_img_prop:
updated_frames, updated_masks = [], []
pad_len = 10
for f in range(0, video_length, subvideo_length_img_prop):
s_f = max(0, f - pad_len)
e_f = min(video_length, f + subvideo_length_img_prop + pad_len)
pad_len_s = max(0, f) - s_f
pad_len_e = e_f - min(video_length, f + subvideo_length_img_prop)
b, t, _, _, _ = masks_dilated[:, s_f:e_f].size()
pred_flows_bi_sub = (pred_flows_bi[0][:, s_f:e_f-1], pred_flows_bi[1][:, s_f:e_f-1])
prop_imgs_sub, updated_local_masks_sub = self.model.img_propagation(masked_frames[:, s_f:e_f],
pred_flows_bi_sub,
masks_dilated[:, s_f:e_f],
'nearest')
updated_frames_sub = frames[:, s_f:e_f] * (1 - masks_dilated[:, s_f:e_f]) + \
prop_imgs_sub.view(b, t, 3, h, w) * masks_dilated[:, s_f:e_f]
updated_masks_sub = updated_local_masks_sub.view(b, t, 1, h, w)
updated_frames.append(updated_frames_sub[:, pad_len_s:e_f-s_f-pad_len_e])
updated_masks.append(updated_masks_sub[:, pad_len_s:e_f-s_f-pad_len_e])
torch.cuda.empty_cache()
updated_frames = torch.cat(updated_frames, dim=1)
updated_masks = torch.cat(updated_masks, dim=1)
else:
b, t, _, _, _ = masks_dilated.size()
prop_imgs, updated_local_masks = self.model.img_propagation(masked_frames, pred_flows_bi, masks_dilated, 'nearest')
updated_frames = frames * (1 - masks_dilated) + prop_imgs.view(b, t, 3, h, w) * masks_dilated
updated_masks = updated_local_masks.view(b, t, 1, h, w)
torch.cuda.empty_cache()
ori_frames = frames_inp
comp_frames = [None] * video_length
neighbor_stride = neighbor_length // 2
if video_length > subvideo_length:
ref_num = subvideo_length // ref_stride
else:
ref_num = -1
# ---- feature propagation + transformer ----
for f in tqdm(range(0, video_length, neighbor_stride)):
neighbor_ids = [
i for i in range(max(0, f - neighbor_stride),
min(video_length, f + neighbor_stride + 1))
]
ref_ids = get_ref_index(f, neighbor_ids, video_length, ref_stride, ref_num)
selected_imgs = updated_frames[:, neighbor_ids + ref_ids, :, :, :]
selected_masks = masks_dilated[:, neighbor_ids + ref_ids, :, :, :]
selected_update_masks = updated_masks[:, neighbor_ids + ref_ids, :, :, :]
selected_pred_flows_bi = (pred_flows_bi[0][:, neighbor_ids[:-1], :, :, :], pred_flows_bi[1][:, neighbor_ids[:-1], :, :, :])
with torch.no_grad():
# 1.0 indicates mask
l_t = len(neighbor_ids)
# pred_img = selected_imgs # results of image propagation
pred_img = self.model(selected_imgs, selected_pred_flows_bi, selected_masks, selected_update_masks, l_t)
pred_img = pred_img.view(-1, 3, h, w)
pred_img = (pred_img + 1) / 2
pred_img = pred_img.cpu().permute(0, 2, 3, 1).numpy() * 255
binary_masks = masks_dilated[0, neighbor_ids, :, :, :].cpu().permute(
0, 2, 3, 1).numpy().astype(np.uint8)
for i in range(len(neighbor_ids)):
idx = neighbor_ids[i]
img = np.array(pred_img[i]).astype(np.uint8) * binary_masks[i] \
+ ori_frames[idx] * (1 - binary_masks[i])
if comp_frames[idx] is None:
comp_frames[idx] = img
else:
comp_frames[idx] = comp_frames[idx].astype(np.float32) * 0.5 + img.astype(np.float32) * 0.5
comp_frames[idx] = comp_frames[idx].astype(np.uint8)
torch.cuda.empty_cache()
# need to return numpy array, T, H, W, 3
comp_frames = [cv2.resize(f, out_size) for f in comp_frames]
return comp_frames
|