Spaces:
Running
on
A10G
Running
on
A10G
File size: 10,080 Bytes
320e465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from RAFT import RAFT
from model.modules.flow_loss_utils import flow_warp, ternary_loss2
def initialize_RAFT(model_path='weights/raft-things.pth', device='cuda'):
"""Initializes the RAFT model.
"""
args = argparse.ArgumentParser()
args.raft_model = model_path
args.small = False
args.mixed_precision = False
args.alternate_corr = False
model = torch.nn.DataParallel(RAFT(args))
model.load_state_dict(torch.load(args.raft_model, map_location='cpu'))
model = model.module
model.to(device)
return model
class RAFT_bi(nn.Module):
"""Flow completion loss"""
def __init__(self, model_path='weights/raft-things.pth', device='cuda'):
super().__init__()
self.fix_raft = initialize_RAFT(model_path, device=device)
for p in self.fix_raft.parameters():
p.requires_grad = False
self.l1_criterion = nn.L1Loss()
self.eval()
def forward(self, gt_local_frames, iters=20):
b, l_t, c, h, w = gt_local_frames.size()
# print(gt_local_frames.shape)
with torch.no_grad():
gtlf_1 = gt_local_frames[:, :-1, :, :, :].reshape(-1, c, h, w)
gtlf_2 = gt_local_frames[:, 1:, :, :, :].reshape(-1, c, h, w)
# print(gtlf_1.shape)
_, gt_flows_forward = self.fix_raft(gtlf_1, gtlf_2, iters=iters, test_mode=True)
_, gt_flows_backward = self.fix_raft(gtlf_2, gtlf_1, iters=iters, test_mode=True)
gt_flows_forward = gt_flows_forward.view(b, l_t-1, 2, h, w)
gt_flows_backward = gt_flows_backward.view(b, l_t-1, 2, h, w)
return gt_flows_forward, gt_flows_backward
##################################################################################
def smoothness_loss(flow, cmask):
delta_u, delta_v, mask = smoothness_deltas(flow)
loss_u = charbonnier_loss(delta_u, cmask)
loss_v = charbonnier_loss(delta_v, cmask)
return loss_u + loss_v
def smoothness_deltas(flow):
"""
flow: [b, c, h, w]
"""
mask_x = create_mask(flow, [[0, 0], [0, 1]])
mask_y = create_mask(flow, [[0, 1], [0, 0]])
mask = torch.cat((mask_x, mask_y), dim=1)
mask = mask.to(flow.device)
filter_x = torch.tensor([[0, 0, 0.], [0, 1, -1], [0, 0, 0]])
filter_y = torch.tensor([[0, 0, 0.], [0, 1, 0], [0, -1, 0]])
weights = torch.ones([2, 1, 3, 3])
weights[0, 0] = filter_x
weights[1, 0] = filter_y
weights = weights.to(flow.device)
flow_u, flow_v = torch.split(flow, split_size_or_sections=1, dim=1)
delta_u = F.conv2d(flow_u, weights, stride=1, padding=1)
delta_v = F.conv2d(flow_v, weights, stride=1, padding=1)
return delta_u, delta_v, mask
def second_order_loss(flow, cmask):
delta_u, delta_v, mask = second_order_deltas(flow)
loss_u = charbonnier_loss(delta_u, cmask)
loss_v = charbonnier_loss(delta_v, cmask)
return loss_u + loss_v
def charbonnier_loss(x, mask=None, truncate=None, alpha=0.45, beta=1.0, epsilon=0.001):
"""
Compute the generalized charbonnier loss of the difference tensor x
All positions where mask == 0 are not taken into account
x: a tensor of shape [b, c, h, w]
mask: a mask of shape [b, mc, h, w], where mask channels must be either 1 or the same as
the number of channels of x. Entries should be 0 or 1
return: loss
"""
b, c, h, w = x.shape
norm = b * c * h * w
error = torch.pow(torch.square(x * beta) + torch.square(torch.tensor(epsilon)), alpha)
if mask is not None:
error = mask * error
if truncate is not None:
error = torch.min(error, truncate)
return torch.sum(error) / norm
def second_order_deltas(flow):
"""
consider the single flow first
flow shape: [b, c, h, w]
"""
# create mask
mask_x = create_mask(flow, [[0, 0], [1, 1]])
mask_y = create_mask(flow, [[1, 1], [0, 0]])
mask_diag = create_mask(flow, [[1, 1], [1, 1]])
mask = torch.cat((mask_x, mask_y, mask_diag, mask_diag), dim=1)
mask = mask.to(flow.device)
filter_x = torch.tensor([[0, 0, 0.], [1, -2, 1], [0, 0, 0]])
filter_y = torch.tensor([[0, 1, 0.], [0, -2, 0], [0, 1, 0]])
filter_diag1 = torch.tensor([[1, 0, 0.], [0, -2, 0], [0, 0, 1]])
filter_diag2 = torch.tensor([[0, 0, 1.], [0, -2, 0], [1, 0, 0]])
weights = torch.ones([4, 1, 3, 3])
weights[0] = filter_x
weights[1] = filter_y
weights[2] = filter_diag1
weights[3] = filter_diag2
weights = weights.to(flow.device)
# split the flow into flow_u and flow_v, conv them with the weights
flow_u, flow_v = torch.split(flow, split_size_or_sections=1, dim=1)
delta_u = F.conv2d(flow_u, weights, stride=1, padding=1)
delta_v = F.conv2d(flow_v, weights, stride=1, padding=1)
return delta_u, delta_v, mask
def create_mask(tensor, paddings):
"""
tensor shape: [b, c, h, w]
paddings: [2 x 2] shape list, the first row indicates up and down paddings
the second row indicates left and right paddings
| |
| x |
| x * x |
| x |
| |
"""
shape = tensor.shape
inner_height = shape[2] - (paddings[0][0] + paddings[0][1])
inner_width = shape[3] - (paddings[1][0] + paddings[1][1])
inner = torch.ones([inner_height, inner_width])
torch_paddings = [paddings[1][0], paddings[1][1], paddings[0][0], paddings[0][1]] # left, right, up and down
mask2d = F.pad(inner, pad=torch_paddings)
mask3d = mask2d.unsqueeze(0).repeat(shape[0], 1, 1)
mask4d = mask3d.unsqueeze(1)
return mask4d.detach()
def ternary_loss(flow_comp, flow_gt, mask, current_frame, shift_frame, scale_factor=1):
if scale_factor != 1:
current_frame = F.interpolate(current_frame, scale_factor=1 / scale_factor, mode='bilinear')
shift_frame = F.interpolate(shift_frame, scale_factor=1 / scale_factor, mode='bilinear')
warped_sc = flow_warp(shift_frame, flow_gt.permute(0, 2, 3, 1))
noc_mask = torch.exp(-50. * torch.sum(torch.abs(current_frame - warped_sc), dim=1).pow(2)).unsqueeze(1)
warped_comp_sc = flow_warp(shift_frame, flow_comp.permute(0, 2, 3, 1))
loss = ternary_loss2(current_frame, warped_comp_sc, noc_mask, mask)
return loss
class FlowLoss(nn.Module):
def __init__(self):
super().__init__()
self.l1_criterion = nn.L1Loss()
def forward(self, pred_flows, gt_flows, masks, frames):
# pred_flows: b t-1 2 h w
loss = 0
warp_loss = 0
h, w = pred_flows[0].shape[-2:]
masks = [masks[:,:-1,...].contiguous(), masks[:, 1:, ...].contiguous()]
frames0 = frames[:,:-1,...]
frames1 = frames[:,1:,...]
current_frames = [frames0, frames1]
next_frames = [frames1, frames0]
for i in range(len(pred_flows)):
# print(pred_flows[i].shape)
combined_flow = pred_flows[i] * masks[i] + gt_flows[i] * (1-masks[i])
l1_loss = self.l1_criterion(pred_flows[i] * masks[i], gt_flows[i] * masks[i]) / torch.mean(masks[i])
l1_loss += self.l1_criterion(pred_flows[i] * (1-masks[i]), gt_flows[i] * (1-masks[i])) / torch.mean((1-masks[i]))
smooth_loss = smoothness_loss(combined_flow.reshape(-1,2,h,w), masks[i].reshape(-1,1,h,w))
smooth_loss2 = second_order_loss(combined_flow.reshape(-1,2,h,w), masks[i].reshape(-1,1,h,w))
warp_loss_i = ternary_loss(combined_flow.reshape(-1,2,h,w), gt_flows[i].reshape(-1,2,h,w),
masks[i].reshape(-1,1,h,w), current_frames[i].reshape(-1,3,h,w), next_frames[i].reshape(-1,3,h,w))
loss += l1_loss + smooth_loss + smooth_loss2
warp_loss += warp_loss_i
return loss, warp_loss
def edgeLoss(preds_edges, edges):
"""
Args:
preds_edges: with shape [b, c, h , w]
edges: with shape [b, c, h, w]
Returns: Edge losses
"""
mask = (edges > 0.5).float()
b, c, h, w = mask.shape
num_pos = torch.sum(mask, dim=[1, 2, 3]).float() # Shape: [b,].
num_neg = c * h * w - num_pos # Shape: [b,].
neg_weights = (num_neg / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2).unsqueeze(3)
pos_weights = (num_pos / (num_pos + num_neg)).unsqueeze(1).unsqueeze(2).unsqueeze(3)
weight = neg_weights * mask + pos_weights * (1 - mask) # weight for debug
losses = F.binary_cross_entropy_with_logits(preds_edges.float(), edges.float(), weight=weight, reduction='none')
loss = torch.mean(losses)
return loss
class EdgeLoss(nn.Module):
def __init__(self):
super().__init__()
def forward(self, pred_edges, gt_edges, masks):
# pred_flows: b t-1 1 h w
loss = 0
h, w = pred_edges[0].shape[-2:]
masks = [masks[:,:-1,...].contiguous(), masks[:, 1:, ...].contiguous()]
for i in range(len(pred_edges)):
# print(f'edges_{i}', torch.sum(gt_edges[i])) # debug
combined_edge = pred_edges[i] * masks[i] + gt_edges[i] * (1-masks[i])
edge_loss = (edgeLoss(pred_edges[i].reshape(-1,1,h,w), gt_edges[i].reshape(-1,1,h,w)) \
+ 5 * edgeLoss(combined_edge.reshape(-1,1,h,w), gt_edges[i].reshape(-1,1,h,w)))
loss += edge_loss
return loss
class FlowSimpleLoss(nn.Module):
def __init__(self):
super().__init__()
self.l1_criterion = nn.L1Loss()
def forward(self, pred_flows, gt_flows):
# pred_flows: b t-1 2 h w
loss = 0
h, w = pred_flows[0].shape[-2:]
h_orig, w_orig = gt_flows[0].shape[-2:]
pred_flows = [f.view(-1, 2, h, w) for f in pred_flows]
gt_flows = [f.view(-1, 2, h_orig, w_orig) for f in gt_flows]
ds_factor = 1.0*h/h_orig
gt_flows = [F.interpolate(f, scale_factor=ds_factor, mode='area') * ds_factor for f in gt_flows]
for i in range(len(pred_flows)):
loss += self.l1_criterion(pred_flows[i], gt_flows[i])
return loss |