Spaces:
Runtime error
Runtime error
File size: 6,222 Bytes
7573b08 9e2dd07 7573b08 9e2dd07 7573b08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
import sys
import time
import numpy as np
from keras.callbacks import Callback
from scipy.io.wavfile import read, write
from keras.models import Model, Sequential
from keras.layers import Convolution1D, AtrousConvolution1D, Flatten, Dense, \
Input, Lambda, merge, Activation
def wavenetBlock(n_atrous_filters, atrous_filter_size, atrous_rate):
def f(input_):
residual = input_
tanh_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
atrous_rate=atrous_rate,
border_mode='same',
activation='tanh')(input_)
sigmoid_out = AtrousConvolution1D(n_atrous_filters, atrous_filter_size,
atrous_rate=atrous_rate,
border_mode='same',
activation='sigmoid')(input_)
merged = merge([tanh_out, sigmoid_out], mode='mul')
skip_out = Convolution1D(1, 1, activation='relu', border_mode='same')(merged)
out = merge([skip_out, residual], mode='sum')
return out, skip_out
return f
def get_basic_generative_model(input_size):
input_ = Input(shape=(input_size, 1))
A, B = wavenetBlock(64, 2, 2)(input_)
skip_connections = [B]
for i in range(20):
A, B = wavenetBlock(64, 2, 2**((i+2)%9))(A)
skip_connections.append(B)
net = merge(skip_connections, mode='sum')
net = Activation('relu')(net)
net = Convolution1D(1, 1, activation='relu')(net)
net = Convolution1D(1, 1)(net)
net = Flatten()(net)
net = Dense(256, activation='softmax')(net)
model = Model(input=input_, output=net)
model.compile(loss='categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
model.summary()
return model
def get_audio(filename):
sr, audio = read(filename)
audio = audio.astype(float)
audio = audio - audio.min()
audio = audio / (audio.max() - audio.min())
audio = (audio - 0.5) * 2
return sr, audio
def frame_generator(sr, audio, frame_size, frame_shift, minibatch_size=20):
audio_len = len(audio)
X = []
y = []
while 1:
for i in range(0, audio_len - frame_size - 1, frame_shift):
frame = audio[i:i+frame_size]
if len(frame) < frame_size:
break
if i + frame_size >= audio_len:
break
temp = audio[i + frame_size]
target_val = int((np.sign(temp) * (np.log(1 + 256*abs(temp)) / (
np.log(1+256))) + 1)/2.0 * 255)
X.append(frame.reshape(frame_size, 1))
y.append((np.eye(256)[target_val]))
if len(X) == minibatch_size:
yield np.array(X), np.array(y)
X = []
y = []
def get_audio_from_model(model, sr, duration, seed_audio):
print 'Generating audio...'
new_audio = np.zeros((sr * duration))
curr_sample_idx = 0
while curr_sample_idx < new_audio.shape[0]:
distribution = np.array(model.predict(seed_audio.reshape(1,
frame_size, 1)
), dtype=float).reshape(256)
distribution /= distribution.sum().astype(float)
predicted_val = np.random.choice(range(256), p=distribution)
ampl_val_8 = ((((predicted_val) / 255.0) - 0.5) * 2.0)
ampl_val_16 = (np.sign(ampl_val_8) * (1/256.0) * ((1 + 256.0)**abs(
ampl_val_8) - 1)) * 2**15
new_audio[curr_sample_idx] = ampl_val_16
seed_audio[-1] = ampl_val_16
seed_audio[:-1] = seed_audio[1:]
pc_str = str(round(100*curr_sample_idx/float(new_audio.shape[0]), 2))
sys.stdout.write('Percent complete: ' + pc_str + '\r')
sys.stdout.flush()
curr_sample_idx += 1
print 'Audio generated.'
return new_audio.astype(np.int16)
class SaveAudioCallback(Callback):
def __init__(self, ckpt_freq, sr, seed_audio):
super(SaveAudioCallback, self).__init__()
self.ckpt_freq = ckpt_freq
self.sr = sr
self.seed_audio = seed_audio
def on_epoch_end(self, epoch, logs={}):
if (epoch+1)%self.ckpt_freq==0:
ts = str(int(time.time()))
filepath = os.path.join('output/', 'ckpt_'+ts+'.wav')
audio = get_audio_from_model(self.model, self.sr, 0.5, self.seed_audio)
write(filepath, self.sr, audio)
if __name__ == '__main__':
n_epochs = 2000
frame_size = 2048
frame_shift = 128
sr_training, training_audio = get_audio('train.wav')
# training_audio = training_audio[:sr_training*1200]
sr_valid, valid_audio = get_audio('validate.wav')
# valid_audio = valid_audio[:sr_valid*60]
assert sr_training == sr_valid, "Training, validation samplerate mismatch"
n_training_examples = int((len(training_audio)-frame_size-1) / float(
frame_shift))
n_validation_examples = int((len(valid_audio)-frame_size-1) / float(
frame_shift))
model = get_basic_generative_model(frame_size)
print 'Total training examples:', n_training_examples
print 'Total validation examples:', n_validation_examples
audio_context = valid_audio[:frame_size]
save_audio_clbk = SaveAudioCallback(100, sr_training, audio_context)
validation_data_gen = frame_generator(sr_valid, valid_audio, frame_size, frame_shift)
training_data_gen = frame_generator(sr_training, training_audio, frame_size, frame_shift)
model.fit_generator(training_data_gen, samples_per_epoch=3000, nb_epoch=n_epochs, validation_data=validation_data_gen,nb_val_samples=500, verbose=1, callbacks=[save_audio_clbk])
print('Saving model...')
str_timestamp = str(int(time.time()))
model.save('models/model_'+str_timestamp+'_'+str(n_epochs)+'.h5')
print('Generating audio...')
new_audio = get_audio_from_model(model, sr_training, 2, audio_context)
outfilepath = 'output/generated_'+str_timestamp+'.wav'
print 'Writing generated audio to:', outfilepath
write(outfilepath, sr_training, new_audio)
print '\nDone!' |