File size: 13,253 Bytes
edad70f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Loss functions

import torch
import torch.nn as nn
import numpy as np
from utils.general import bbox_iou
from utils.torch_utils import is_parallel


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    return 1.0 - 0.5 * eps, 0.5 * eps


class BCEBlurWithLogitsLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=0.05):
        super(BCEBlurWithLogitsLoss, self).__init__()
        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
        self.alpha = alpha

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        pred = torch.sigmoid(pred)  # prob from logits
        dx = pred - true  # reduce only missing label effects
        # dx = (pred - true).abs()  # reduce missing label and false label effects
        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
        loss *= alpha_factor
        return loss.mean()


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super(FocalLoss, self).__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = torch.sigmoid(pred)  # prob from logits
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class QFocalLoss(nn.Module):
    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super(QFocalLoss, self).__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)

        pred_prob = torch.sigmoid(pred)  # prob from logits
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss

class WingLoss(nn.Module):
    def __init__(self, w=10, e=2):
        super(WingLoss, self).__init__()
        # https://arxiv.org/pdf/1711.06753v4.pdf   Figure 5
        self.w = w
        self.e = e
        self.C = self.w - self.w * np.log(1 + self.w / self.e)

    def forward(self, x, t, sigma=1):
        weight = torch.ones_like(t)
        weight[torch.where(t==-1)] = 0
        diff = weight * (x - t)
        abs_diff = diff.abs()
        flag = (abs_diff.data < self.w).float()
        y = flag * self.w * torch.log(1 + abs_diff / self.e) + (1 - flag) * (abs_diff - self.C)
        return y.sum()

class LandmarksLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=1.0):
        super(LandmarksLoss, self).__init__()
        self.loss_fcn = WingLoss()#nn.SmoothL1Loss(reduction='sum')
        self.alpha = alpha

    def forward(self, pred, truel, mask):
        loss = self.loss_fcn(pred*mask, truel*mask)
        return loss / (torch.sum(mask) + 10e-14)


def compute_loss(p, targets, model):  # predictions, targets, model
    device = targets.device
    lcls, lbox, lobj, lmark = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
    tcls, tbox, indices, anchors, tlandmarks, lmks_mask = build_targets(p, targets, model)  # targets
    h = model.hyp  # hyperparameters

    # Define criteria
    BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))  # weight=model.class_weights)
    BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))

    landmarks_loss = LandmarksLoss(1.0)

    # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
    cp, cn = smooth_BCE(eps=0.0)

    # Focal loss
    g = h['fl_gamma']  # focal loss gamma
    if g > 0:
        BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

    # Losses
    nt = 0  # number of targets
    no = len(p)  # number of outputs
    balance = [4.0, 1.0, 0.4] if no == 3 else [4.0, 1.0, 0.4, 0.1]  # P3-5 or P3-6
    for i, pi in enumerate(p):  # layer index, layer predictions
        b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
        tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj

        n = b.shape[0]  # number of targets
        if n:
            nt += n  # cumulative targets
            ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets

            # Regression
            pxy = ps[:, :2].sigmoid() * 2. - 0.5
            pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
            pbox = torch.cat((pxy, pwh), 1)  # predicted box
            iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)
            lbox += (1.0 - iou).mean()  # iou loss

            # Objectness
            tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * iou.detach().clamp(0).type(tobj.dtype)  # iou ratio

            # Classification
            if model.nc > 1:  # cls loss (only if multiple classes)
                t = torch.full_like(ps[:, 15:], cn, device=device)  # targets
                t[range(n), tcls[i]] = cp
                lcls += BCEcls(ps[:, 15:], t)  # BCE

            # Append targets to text file
            # with open('targets.txt', 'a') as file:
            #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

            #landmarks loss
            #plandmarks = ps[:,5:15].sigmoid() * 8. - 4.
            plandmarks = ps[:,5:15]

            plandmarks[:, 0:2] = plandmarks[:, 0:2] * anchors[i]
            plandmarks[:, 2:4] = plandmarks[:, 2:4] * anchors[i]
            plandmarks[:, 4:6] = plandmarks[:, 4:6] * anchors[i]
            plandmarks[:, 6:8] = plandmarks[:, 6:8] * anchors[i]
            plandmarks[:, 8:10] = plandmarks[:,8:10] * anchors[i]

            lmark += landmarks_loss(plandmarks, tlandmarks[i], lmks_mask[i])


        lobj += BCEobj(pi[..., 4], tobj) * balance[i]  # obj loss

    s = 3 / no  # output count scaling
    lbox *= h['box'] * s
    lobj *= h['obj'] * s * (1.4 if no == 4 else 1.)
    lcls *= h['cls'] * s
    lmark *= h['landmark'] * s

    bs = tobj.shape[0]  # batch size

    loss = lbox + lobj + lcls + lmark
    return loss * bs, torch.cat((lbox, lobj, lcls, lmark, loss)).detach()


def build_targets(p, targets, model):
    # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
    det = model.module.model[-1] if is_parallel(model) else model.model[-1]  # Detect() module
    na, nt = det.na, targets.shape[0]  # number of anchors, targets
    tcls, tbox, indices, anch, landmarks, lmks_mask = [], [], [], [], [], []
    #gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
    gain = torch.ones(17, device=targets.device)
    ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
    targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices

    g = 0.5  # bias
    off = torch.tensor([[0, 0],
                        [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
                        # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
                        ], device=targets.device).float() * g  # offsets

    for i in range(det.nl):
        anchors = det.anchors[i]
        gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain
        #landmarks 10
        gain[6:16] = torch.tensor(p[i].shape)[[3, 2, 3, 2, 3, 2, 3, 2, 3, 2]]  # xyxy gain

        # Match targets to anchors
        t = targets * gain
        if nt:
            # Matches
            r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
            j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t']  # compare
            # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
            t = t[j]  # filter

            # Offsets
            gxy = t[:, 2:4]  # grid xy
            gxi = gain[[2, 3]] - gxy  # inverse
            j, k = ((gxy % 1. < g) & (gxy > 1.)).T
            l, m = ((gxi % 1. < g) & (gxi > 1.)).T
            j = torch.stack((torch.ones_like(j), j, k, l, m))
            t = t.repeat((5, 1, 1))[j]
            offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
        else:
            t = targets[0]
            offsets = 0

        # Define
        b, c = t[:, :2].long().T  # image, class
        gxy = t[:, 2:4]  # grid xy
        gwh = t[:, 4:6]  # grid wh
        gij = (gxy - offsets).long()
        gi, gj = gij.T  # grid xy indices

        # Append
        a = t[:, 16].long()  # anchor indices
        indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
        tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
        anch.append(anchors[a])  # anchors
        tcls.append(c)  # class

        #landmarks
        lks = t[:,6:16]
        #lks_mask = lks > 0
        #lks_mask = lks_mask.float()
        lks_mask = torch.where(lks < 0, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))

        #应该是关键点的坐标除以anch的宽高才对,便于模型学习。使用gwh会导致不同关键点的编码不同,没有统一的参考标准

        lks[:, [0, 1]] = (lks[:, [0, 1]] - gij)
        lks[:, [2, 3]] = (lks[:, [2, 3]] - gij)
        lks[:, [4, 5]] = (lks[:, [4, 5]] - gij)
        lks[:, [6, 7]] = (lks[:, [6, 7]] - gij)
        lks[:, [8, 9]] = (lks[:, [8, 9]] - gij)

        '''
        #anch_w = torch.ones(5, device=targets.device).fill_(anchors[0][0])
        #anch_wh = torch.ones(5, device=targets.device)
        anch_f_0 = (a == 0).unsqueeze(1).repeat(1, 5)
        anch_f_1 = (a == 1).unsqueeze(1).repeat(1, 5)
        anch_f_2 = (a == 2).unsqueeze(1).repeat(1, 5)
        lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_0, lks[:, [0, 2, 4, 6, 8]] / anchors[0][0], lks[:, [0, 2, 4, 6, 8]])
        lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_1, lks[:, [0, 2, 4, 6, 8]] / anchors[1][0], lks[:, [0, 2, 4, 6, 8]])
        lks[:, [0, 2, 4, 6, 8]] = torch.where(anch_f_2, lks[:, [0, 2, 4, 6, 8]] / anchors[2][0], lks[:, [0, 2, 4, 6, 8]])

        lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_0, lks[:, [1, 3, 5, 7, 9]] / anchors[0][1], lks[:, [1, 3, 5, 7, 9]])
        lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_1, lks[:, [1, 3, 5, 7, 9]] / anchors[1][1], lks[:, [1, 3, 5, 7, 9]])
        lks[:, [1, 3, 5, 7, 9]] = torch.where(anch_f_2, lks[:, [1, 3, 5, 7, 9]] / anchors[2][1], lks[:, [1, 3, 5, 7, 9]])

        #new_lks = lks[lks_mask>0]
        #print('new_lks:   min --- ', torch.min(new_lks), '  max --- ', torch.max(new_lks))
        
        lks_mask_1 = torch.where(lks < -3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))
        lks_mask_2 = torch.where(lks > 3, torch.full_like(lks, 0.), torch.full_like(lks, 1.0))

        lks_mask_new = lks_mask * lks_mask_1 * lks_mask_2
        lks_mask_new[:, 0] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
        lks_mask_new[:, 1] = lks_mask_new[:, 0] * lks_mask_new[:, 1]
        lks_mask_new[:, 2] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
        lks_mask_new[:, 3] = lks_mask_new[:, 2] * lks_mask_new[:, 3]
        lks_mask_new[:, 4] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
        lks_mask_new[:, 5] = lks_mask_new[:, 4] * lks_mask_new[:, 5]
        lks_mask_new[:, 6] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
        lks_mask_new[:, 7] = lks_mask_new[:, 6] * lks_mask_new[:, 7]
        lks_mask_new[:, 8] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
        lks_mask_new[:, 9] = lks_mask_new[:, 8] * lks_mask_new[:, 9]
        '''
        lks_mask_new = lks_mask
        lmks_mask.append(lks_mask_new)
        landmarks.append(lks)
        #print('lks: ',  lks.size())

    return tcls, tbox, indices, anch, landmarks, lmks_mask