Spaces:
Runtime error
Runtime error
File size: 7,648 Bytes
9541eae ae1692d 9541eae d2a61f1 9541eae ae1692d 9541eae d2a61f1 53117e5 9541eae d2a61f1 9541eae d2a61f1 9541eae ae1692d d2a61f1 ae1692d d2a61f1 ae1692d d2a61f1 9541eae d2a61f1 ae1692d d2a61f1 9541eae ae1692d 9541eae 3bfabca ae1692d d2a61f1 ae1692d 9541eae ae1692d 9541eae d2a61f1 9541eae d2a61f1 9541eae 0e6d7eb 9541eae c557583 9541eae d2a61f1 9541eae d0c1274 9541eae d2a61f1 9541eae c557583 9541eae d2a61f1 9541eae 16cb44b 9541eae d2a61f1 9541eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
import pandas as pd
from huggingface_hub.hf_api import create_repo, upload_folder, upload_file, HfApi
from huggingface_hub.repository import Repository
import subprocess
import os
import tempfile
from uuid import uuid4
import pickle
import sweetviz as sv
import dabl
import re
def analyze_datasets(dataset, token, column=None, pairwise="off"):
df = pd.read_csv(dataset.name)
username = HfApi().whoami(token=token)["name"]
if column is not None:
analyze_report = sv.analyze(df, target_feat=column, pairwise_analysis=pairwise)
else:
analyze_report = sv.analyze(df, pairwise_analysis=pairwise)
dataset_name = dataset.name.split("/")[-1].strip(".csv")
analyze_report.show_html('./index.html', open_browser=False)
repo_url = create_repo(f"{username}/{dataset_name}-report", repo_type = "space", token = token, space_sdk = "static", private=False)
upload_file(path_or_fileobj ="./index.html", path_in_repo = "./index.html", repo_id =f"{username}/{dataset_name}-report", repo_type = "space", token=token)
readme = f"---\ntitle: {dataset_name}\nemoji: β¨\ncolorFrom: green\ncolorTo: red\nsdk: static\npinned: false\ntags:\n- dataset-report\n---"
with open("README.md", "w+") as f:
f.write(readme)
upload_file(path_or_fileobj ="./README.md", path_in_repo = "README.md", repo_id =f"{username}/{dataset_name}-report", repo_type = "space", token=token)
return f"Your dataset report will be ready at {repo_url}"
from sklearn.utils import estimator_html_repr
def extract_estimator_config(model):
hyperparameter_dict = model.get_params(deep=True)
table = "| Hyperparameters | Value |\n| :-- | :-- |\n"
for hyperparameter, value in hyperparameter_dict.items():
table += f"| {hyperparameter} | {value} |\n"
return table
def detect_training(df, column):
if dabl.detect_types(df)["continuous"][column] or dabl.detect_types(df)["dirty_float"][column]:
trainer = dabl.SimpleRegressor()
task = "regression"
elif dabl.detect_types(df)["categorical"][column] or dabl.detect_types(df)["low_card_int"][column] or dabl.detect_types(df)["free_string"][column]:
trainer = dabl.SimpleClassifier()
task = "classification"
return trainer, task
def edit_types(df):
types = dabl.detect_types(df)
low_cardinality = types[types["low_card_int"] == True].index.tolist()
dirty_float = types[types["dirty_float"] == True].index.tolist()
type_hints = {}
for col in low_cardinality:
type_hints[col] = "categorical"
for col in dirty_float:
type_hints[col] = "continuous"
df_clean = dabl.clean(df, type_hints=type_hints)
return df_clean
def train_baseline(dataset, token, column):
df = pd.read_csv(dataset.name)
dataset_name = dataset.name.split("/")[-1].strip(".csv")
df_clean = edit_types(df)
fc, task = detect_training(df_clean, column)
X = df_clean.drop(column, axis = 1)
y = df_clean[column]
with tempfile.TemporaryDirectory() as tmpdirname:
from contextlib import redirect_stdout
with open(f'{tmpdirname}/logs.txt', 'w') as f:
with redirect_stdout(f):
print('Logging training')
fc.fit(X, y)
username = HfApi().whoami(token=token)["name"]
repo_url = create_repo(repo_id = f"{username}/{dataset_name}-{column}-{task}", token = token)
if task == "regression":
task_metadata = "tabular-regression"
else:
task_metadata = "tabular-classification"
readme = f"---\nlicense: apache-2.0\nlibrary_name: sklearn\ntags:\n- {task_metadata}\n- baseline-trainer\n---\n\n"
readme += f"## Baseline Model trained on {dataset_name} to apply {task} on {column}\n\n"
readme+="**Metrics of the best model:**\n\n"
for elem in str(fc.current_best_).split("\n"):
readme+= f"{elem}\n\n"
readme+= "\n\n**See model plot below:**\n\n"
readme+= re.sub(r"\n\s+", "", str(estimator_html_repr(fc.est_)))
readme+= "\n\n**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain).\n\n"
readme+= "**Logs of training** including the models tried in the process can be found in logs.txt"
with open(f"{tmpdirname}/README.md", "w+") as f:
f.write(readme)
with open(f"{tmpdirname}/clf.pkl", mode="bw") as f:
pickle.dump(fc, file=f)
upload_folder(repo_id =f"{username}/{dataset_name}-{column}-{task}", folder_path=tmpdirname, repo_type = "model", token=token, path_in_repo="./")
return f"Your model will be ready at {repo_url}"
with gr.Blocks() as demo:
main_title = gr.Markdown("""# Baseline Trainer πͺπβ¨""")
main_desc = gr.Markdown("""This app trains a baseline model for a given dataset and pushes it to your Hugging Face Hub Profile with a model card. For better results, use [AutoTrain](https://huggingface.co/autotrain).""")
with gr.Tabs():
with gr.TabItem("Baseline Trainer") as baseline_trainer:
with gr.Row():
with gr.Column():
title = gr.Markdown(""" ## Train a supervised baseline model πͺ""")
description = gr.Markdown("This app trains a model and pushes it to your Hugging Face Hub Profile.")
dataset = gr.File(label = "CSV Dataset")
column = gr.Text(label = "Enter target variable:")
pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token. You can find your token [here](https://huggingface.co/settings/tokens)")
token = gr.Textbox(label = "Your Hugging Face Token")
inference_run = gr.Button("Train")
inference_progress = gr.StatusTracker(cover_container=True)
outcome = gr.outputs.Textbox(label = "Progress")
inference_run.click(
train_baseline,
inputs=[dataset, token, column],
outputs=outcome,
status_tracker=inference_progress,
)
with gr.TabItem("Analyze") as analyze:
with gr.Row():
with gr.Column():
title = gr.Markdown(""" ## Analyze Dataset πͺ""")
description = gr.Markdown("Analyze a dataset or predictive variables against a target variable in a dataset (enter a column name to column section if you want to compare against target value). You can also do pairwise analysis, but it has quadratic complexity.")
dataset = gr.File(label = "CSV Dataset")
column = gr.Text(label = "Compare dataset against a target variable (Optional)")
pairwise = gr.Radio(["off", "on"], label = "Enable pairwise analysis")
token = gr.Textbox(label = "Your Hugging Face Token")
pushing_desc = gr.Markdown("This app needs your Hugging Face Hub token. You can find your token [here](https://huggingface.co/settings/tokens)")
inference_run = gr.Button("Infer")
inference_progress = gr.StatusTracker(cover_container=True)
outcome = gr.outputs.Textbox()
inference_run.click(
analyze_datasets,
inputs=[dataset, token, column, pairwise],
outputs=outcome,
status_tracker=inference_progress,
)
demo.launch(debug=True) |