File size: 1,483 Bytes
966b73b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from transformers import pipeline
# Load a GPT-Neo model fine-tuned for code generation
generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B')
def generate_code(prompt):
# Generate code from the model
responses = generator(prompt, max_length=50, num_return_sequences=1, temperature=0.5)
return responses[0]['generated_text']
# Create a Gradio Interface
iface = gr.Interface(
fn=generate_code,
inputs=[gr.inputs.Textbox(lines=10, label="Type your code description here")],
outputs=[gr.outputs.Textbox(label="Generated Code")],
examples=[["Create a Python function to add two numbers"]],
)
# Run the interface
if __name__ == "__main__":
iface.launch()
#import gradio as gr
#from transformers import pipeline
# Load a small GPT model fine-tuned for Python code generation
#generator = pipeline('text-generation', model='microsoft/CodeGPT-small-py')
#def generate_code(prompt):
# # Generate code from the model
# responses = generator(prompt, max_length=150, num_return_sequences=1, temperature=0.5)
# return responses[0]['generated_text']
# Create a Gradio Interface
#iface = gr.Interface(
# fn=generate_code,
# inputs=[gr.inputs.Textbox(lines=10, label="Type your code description here")],
# outputs=[gr.outputs.Textbox(label="Generated Code")],
# examples=[["Define a Python function to calculate factorial."]],
#)
# Run the interface
#if __name__ == "__main__":
# iface.launch()
|