Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,197 Bytes
d1a539d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.nn.functional as F
import copy
import math
import random
from contextlib import nullcontext
from einops import rearrange
from scepter.modules.model.network.ldm import LatentDiffusion
from scepter.modules.model.registry import MODELS, DIFFUSIONS, BACKBONES, LOSSES, TOKENIZERS, EMBEDDERS
from scepter.modules.model.utils.basic_utils import check_list_of_list, to_device, pack_imagelist_into_tensor, \
limit_batch_data, unpack_tensor_into_imagelist, count_params, disabled_train
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.distribute import we
@MODELS.register_class()
class LatentDiffusionACEPlus(LatentDiffusion):
para_dict = LatentDiffusion.para_dict
def __init__(self, cfg, logger=None):
super().__init__(cfg, logger=logger)
self.guide_scale = cfg.get('GUIDE_SCALE', 1.0)
def init_params(self):
self.parameterization = self.cfg.get('PARAMETERIZATION', 'rf')
assert self.parameterization in [
'eps', 'x0', 'v', 'rf'
], 'currently only supporting "eps" and "x0" and "v" and "rf"'
diffusion_cfg = self.cfg.get("DIFFUSION", None)
assert diffusion_cfg is not None
if self.cfg.have("WORK_DIR"):
diffusion_cfg.WORK_DIR = self.cfg.WORK_DIR
self.diffusion = DIFFUSIONS.build(diffusion_cfg, logger=self.logger)
self.pretrained_model = self.cfg.get('PRETRAINED_MODEL', None)
self.ignore_keys = self.cfg.get('IGNORE_KEYS', [])
self.model_config = self.cfg.DIFFUSION_MODEL
self.first_stage_config = self.cfg.FIRST_STAGE_MODEL
self.cond_stage_config = self.cfg.COND_STAGE_MODEL
self.tokenizer_config = self.cfg.get('TOKENIZER', None)
self.loss_config = self.cfg.get('LOSS', None)
self.scale_factor = self.cfg.get('SCALE_FACTOR', 0.18215)
self.size_factor = self.cfg.get('SIZE_FACTOR', 16)
self.default_n_prompt = self.cfg.get('DEFAULT_N_PROMPT', '')
self.default_n_prompt = '' if self.default_n_prompt is None else self.default_n_prompt
self.p_zero = self.cfg.get('P_ZERO', 0.0)
self.train_n_prompt = self.cfg.get('TRAIN_N_PROMPT', '')
if self.default_n_prompt is None:
self.default_n_prompt = ''
if self.train_n_prompt is None:
self.train_n_prompt = ''
self.use_ema = self.cfg.get('USE_EMA', False)
self.model_ema_config = self.cfg.get('DIFFUSION_MODEL_EMA', None)
def construct_network(self):
# embedding_context = torch.device("meta") if self.model_config.get("PRETRAINED_MODEL", None) else nullcontext()
# with embedding_context:
self.model = BACKBONES.build(self.model_config, logger=self.logger).to(torch.bfloat16)
self.logger.info('all parameters:{}'.format(count_params(self.model)))
if self.use_ema:
if self.model_ema_config:
self.model_ema = BACKBONES.build(self.model_ema_config,
logger=self.logger)
else:
self.model_ema = copy.deepcopy(self.model)
self.model_ema = self.model_ema.eval()
for param in self.model_ema.parameters():
param.requires_grad = False
if self.loss_config:
self.loss = LOSSES.build(self.loss_config, logger=self.logger)
if self.tokenizer_config is not None:
self.tokenizer = TOKENIZERS.build(self.tokenizer_config,
logger=self.logger)
if self.first_stage_config:
self.first_stage_model = MODELS.build(self.first_stage_config,
logger=self.logger)
self.first_stage_model = self.first_stage_model.eval()
self.first_stage_model.train = disabled_train
for param in self.first_stage_model.parameters():
param.requires_grad = False
else:
self.first_stage_model = None
if self.tokenizer_config is not None:
self.cond_stage_config.KWARGS = {
'vocab_size': self.tokenizer.vocab_size
}
if self.cond_stage_config == '__is_unconditional__':
print(
f'Training {self.__class__.__name__} as an unconditional model.'
)
self.cond_stage_model = None
else:
model = EMBEDDERS.build(self.cond_stage_config, logger=self.logger)
self.cond_stage_model = model.eval().requires_grad_(False)
self.cond_stage_model.train = disabled_train
@torch.no_grad()
def encode_first_stage(self, x, **kwargs):
def run_one_image(u):
zu = self.first_stage_model.encode(u)
if isinstance(zu, (tuple, list)):
zu = zu[0]
return zu
z = [run_one_image(u.unsqueeze(0) if u.dim() == 3 else u) for u in x]
return z
@torch.no_grad()
def decode_first_stage(self, z):
return [self.first_stage_model.decode(zu) for zu in z]
def noise_sample(self, num_samples, h, w, seed, dtype=torch.bfloat16):
noise = torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(h / 16),
2 * math.ceil(w / 16),
device=we.device_id,
dtype=dtype,
generator=torch.Generator(device=we.device_id).manual_seed(seed),
)
return noise
def resize_func(self, x, size):
if x is None: return x
return F.interpolate(x.unsqueeze(0), size = size, mode='nearest-exact')
def parse_ref_and_edit(self, src_image,
modify_image,
src_image_mask,
text_embedding,
#text_mask,
edit_id):
edit_image = []
modi_image = []
edit_mask = []
ref_image = []
ref_mask = []
ref_context = []
ref_y = []
ref_id = []
txt = []
txt_y = []
for sample_id, (one_src,
one_modify,
one_src_mask,
one_text_embedding,
one_text_y,
# one_text_mask,
one_edit_id) in enumerate(zip(src_image,
modify_image,
src_image_mask,
text_embedding["context"],
text_embedding["y"],
#text_mask,
edit_id)
):
ref_id.append([i for i in range(len(one_src))])
if hasattr(self, "ref_cond_stage_model") and self.ref_cond_stage_model:
ref_image.append(self.ref_cond_stage_model.encode_list([((i + 1.0) / 2.0 * 255).type(torch.uint8) for i in one_src]))
else:
ref_image.append(one_src)
ref_mask.append(one_src_mask)
# process edit image & edit image mask
current_edit_image = to_device([one_src[i] for i in one_edit_id], strict=False)
current_edit_image = [v.squeeze(0) for v in self.encode_first_stage(current_edit_image)]
# process modi image
current_modify_image = to_device([one_modify[i] for i in one_edit_id],
strict=False)
current_modify_image = [
v.squeeze(0)
for v in self.encode_first_stage(current_modify_image)
]
current_edit_image_mask = to_device(
[one_src_mask[i] for i in one_edit_id], strict=False)
current_edit_image_mask = [
self.reshape_func(m).squeeze(0)
for m in current_edit_image_mask
]
edit_image.append(current_edit_image)
modi_image.append(current_modify_image)
edit_mask.append(current_edit_image_mask)
ref_context.append(one_text_embedding[:len(ref_id[-1])])
ref_y.append(one_text_y[:len(ref_id[-1])])
if not sum(len(src_) for src_ in src_image) > 0:
ref_image = None
ref_context = None
ref_y = None
for sample_id, (one_text_embedding, one_text_y) in enumerate(zip(text_embedding["context"],
text_embedding["y"])):
txt.append(one_text_embedding[-1].squeeze(0))
txt_y.append(one_text_y[-1])
return {
"edit": edit_image,
'modify': modi_image,
"edit_mask": edit_mask,
"edit_id": edit_id,
"ref_context": ref_context,
"ref_y": ref_y,
"context": txt,
"y": txt_y,
"ref_x": ref_image,
"ref_mask": ref_mask,
"ref_id": ref_id
}
def reshape_func(self, mask):
mask = mask.to(torch.bfloat16)
mask = mask.view((-1, mask.shape[-2], mask.shape[-1]))
mask = rearrange(
mask,
"c (h ph) (w pw) -> c (ph pw) h w",
ph=8,
pw=8,
)
return mask
def forward_train(self,
src_image_list=[],
modify_image_list=[],
src_mask_list=[],
edit_id=[],
image=None,
image_mask=None,
noise=None,
prompt=[],
**kwargs):
'''
Args:
src_image: list of list of src_image
src_image_mask: list of list of src_image_mask
image: target image
image_mask: target image mask
noise: default is None, generate automaticly
ref_prompt: list of list of text
prompt: list of text
**kwargs:
Returns:
'''
assert check_list_of_list(src_image_list) and check_list_of_list(
src_mask_list)
assert self.cond_stage_model is not None
gc_seg = kwargs.pop("gc_seg", [])
gc_seg = int(gc_seg[0]) if len(gc_seg) > 0 else 0
align = kwargs.pop("align", [])
prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
if len(align) < 1: align = [0] * len(prompt_)
context = getattr(self.cond_stage_model, 'encode_list_of_list')(prompt_)
guide_scale = self.guide_scale
if guide_scale is not None:
guide_scale = torch.full((len(prompt_),), guide_scale, device=we.device_id)
else:
guide_scale = None
# image and image_mask
# print("is list of list", check_list_of_list(image))
if check_list_of_list(image):
image = [to_device(ix) for ix in image]
x_start = [self.encode_first_stage(ix, **kwargs) for ix in image]
noise = [[torch.randn_like(ii) for ii in ix] for ix in x_start]
x_start = [torch.cat(ix, dim=-1) for ix in x_start]
noise = [torch.cat(ix, dim=-1) for ix in noise]
noise, _ = pack_imagelist_into_tensor(noise)
image_mask = [to_device(im, strict=False) for im in image_mask]
x_mask = [[self.reshape_func(i).squeeze(0) for i in im] if im is not None else [None] * len(ix) for ix, im in zip(image, image_mask)]
x_mask = [torch.cat(im, dim=-1) for im in x_mask]
else:
image = to_device(image)
x_start = self.encode_first_stage(image, **kwargs)
image_mask = to_device(image_mask, strict=False)
x_mask = [self.reshape_func(i).squeeze(0) for i in image_mask] if image_mask is not None else [None] * len(
image)
loss_mask, _ = pack_imagelist_into_tensor(
tuple(torch.ones_like(ix, dtype=torch.bool, device=ix.device) for ix in x_start))
x_start, x_shapes = pack_imagelist_into_tensor(x_start)
context['x_shapes'] = x_shapes
context['align'] = align
# process image mask
context['x_mask'] = x_mask
ref_edit_context = self.parse_ref_and_edit(src_image_list, modify_image_list, src_mask_list, context, edit_id)
context.update(ref_edit_context)
teacher_context = copy.deepcopy(context)
teacher_context["context"] = torch.cat(teacher_context["context"], dim=0)
teacher_context["y"] = torch.cat(teacher_context["y"], dim=0)
loss = self.diffusion.loss(x_0=x_start,
model=self.model,
model_kwargs={"cond": context,
"gc_seg": gc_seg,
"guidance": guide_scale},
noise=noise,
reduction='none',
**kwargs)
loss = loss[loss_mask].mean()
ret = {'loss': loss, 'probe_data': {'prompt': prompt}}
return ret
@torch.no_grad()
def forward_test(self,
src_image_list=[],
modify_image_list=[],
src_mask_list=[],
edit_id=[],
image=None,
image_mask=None,
prompt=[],
sampler='flow_euler',
sample_steps=20,
seed=2023,
guide_scale=3.5,
guide_rescale=0.0,
show_process=False,
log_num=-1,
**kwargs):
outputs = self.forward_editing(
src_image_list=src_image_list,
src_mask_list=src_mask_list,
modify_image_list=modify_image_list,
edit_id=edit_id,
image=image,
image_mask=image_mask,
prompt=prompt,
sampler=sampler,
sample_steps=sample_steps,
seed=seed,
guide_scale=guide_scale,
guide_rescale=guide_rescale,
show_process=show_process,
log_num=log_num,
**kwargs
)
return outputs
@torch.no_grad()
def forward_editing(self,
src_image_list=[],
modify_image_list=None,
src_mask_list=[],
edit_id=[],
image=None,
image_mask=None,
prompt=[],
sampler='flow_euler',
sample_steps=20,
seed=2023,
guide_scale=3.5,
log_num=-1,
**kwargs
):
# gc_seg is unused
prompt, image, image_mask, src_image, modify_image, src_image_mask, edit_id = limit_batch_data(
[prompt, image, image_mask, src_image_list, modify_image_list, src_mask_list, edit_id], log_num)
assert check_list_of_list(src_image) and check_list_of_list(src_image_mask)
assert self.cond_stage_model is not None
align = kwargs.pop("align", [])
prompt_ = [[pp] if isinstance(pp, str) else pp for pp in prompt]
if len(align) < 1: align = [0] * len(prompt_)
context = getattr(self.cond_stage_model, 'encode_list_of_list')(prompt_)
guide_scale = guide_scale or self.guide_scale
if guide_scale is not None:
guide_scale = torch.full((len(prompt),), guide_scale, device=we.device_id)
else:
guide_scale = None
# image and image_mask
seed = seed if seed >= 0 else random.randint(0, 2 ** 32 - 1)
if image is not None:
if check_list_of_list(image):
image = [torch.cat(ix, dim=-1) for ix in image]
image_mask = [torch.cat(im, dim=-1) for im in image_mask]
noise = [self.noise_sample(1, ix.shape[1], ix.shape[2], seed) for ix in image]
else:
height, width = kwargs.pop("height"), kwargs.pop("width")
noise = [self.noise_sample(1, height, width, seed) for _ in prompt]
noise, x_shapes = pack_imagelist_into_tensor(noise)
context['x_shapes'] = x_shapes
context['align'] = align
# process image mask
image_mask = to_device(image_mask, strict=False)
x_mask = [self.reshape_func(i).squeeze(0) for i in image_mask]
context['x_mask'] = x_mask
ref_edit_context = self.parse_ref_and_edit(src_image, modify_image, src_image_mask, context, edit_id)
context.update(ref_edit_context)
# UNet use input n_prompt
# model = self.model_ema if self.use_ema and self.eval_ema else self.model
# import pdb;pdb.set_trace()
model = self.model
embedding_context = model.no_sync if isinstance(model, torch.distributed.fsdp.FullyShardedDataParallel) \
else nullcontext
with embedding_context():
samples = self.diffusion.sample(
noise=noise,
sampler=sampler,
model=self.model,
model_kwargs={"cond": context, "guidance": guide_scale, "gc_seg": -1
},
steps=sample_steps,
show_progress=True,
guide_scale=guide_scale,
return_intermediate=None,
**kwargs).float()
samples = unpack_tensor_into_imagelist(samples, x_shapes)
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
x_samples = self.decode_first_stage(samples)
outputs = list()
for i in range(len(prompt)):
rec_img = torch.clamp((x_samples[i].float() + 1.0) / 2.0, min=0.0, max=1.0)
rec_img = rec_img.squeeze(0)
edit_imgs, modify_imgs, edit_img_masks = [], [], []
if src_image is not None and src_image[i] is not None:
if src_image_mask[i] is None:
src_image_mask[i] = [None] * len(src_image[i])
for edit_img, modify_img, edit_mask in zip(src_image[i], modify_image_list[i], src_image_mask[i]):
edit_img = torch.clamp((edit_img.float() + 1.0) / 2.0, min=0.0, max=1.0)
edit_imgs.append(edit_img.squeeze(0))
modify_img = torch.clamp((modify_img.float() + 1.0) / 2.0,
min=0.0,
max=1.0)
modify_imgs.append(modify_img.squeeze(0))
if edit_mask is None:
edit_mask = torch.ones_like(edit_img[[0], :, :])
edit_img_masks.append(edit_mask)
one_tup = {
'reconstruct_image': rec_img,
'instruction': prompt[i],
'edit_image': edit_imgs if len(edit_imgs) > 0 else None,
'modify_image': modify_imgs if len(modify_imgs) > 0 else None,
'edit_mask': edit_img_masks if len(edit_imgs) > 0 else None
}
if image is not None:
if image_mask is None:
image_mask = [None] * len(image)
ori_img = torch.clamp((image[i] + 1.0) / 2.0, min=0.0, max=1.0)
one_tup['target_image'] = ori_img.squeeze(0)
one_tup['target_mask'] = image_mask[i] if image_mask[i] is not None else torch.ones_like(
ori_img[[0], :, :])
outputs.append(one_tup)
return outputs
@staticmethod
def get_config_template():
return dict_to_yaml('MODEL',
__class__.__name__,
LatentDiffusionACEPlus.para_dict,
set_name=True)
|