Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,569 Bytes
2a00960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import io
import math
import os
import sys
from collections import defaultdict
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from scepter.modules.data.dataset.base_dataset import BaseDataset
from scepter.modules.data.dataset.registry import DATASETS
from scepter.modules.transform.io import pillow_convert
from scepter.modules.utils.config import dict_to_yaml
from scepter.modules.utils.file_system import FS
Image.MAX_IMAGE_PIXELS = None
@DATASETS.register_class()
class ACEDemoDataset(BaseDataset):
para_dict = {
'MS_DATASET_NAME': {
'value': '',
'description': 'Modelscope dataset name.'
},
'MS_DATASET_NAMESPACE': {
'value': '',
'description': 'Modelscope dataset namespace.'
},
'MS_DATASET_SUBNAME': {
'value': '',
'description': 'Modelscope dataset subname.'
},
'MS_DATASET_SPLIT': {
'value': '',
'description':
'Modelscope dataset split set name, default is train.'
},
'MS_REMAP_KEYS': {
'value':
None,
'description':
'Modelscope dataset header of list file, the default is Target:FILE; '
'If your file is not this header, please set this field, which is a map dict.'
"For example, { 'Image:FILE': 'Target:FILE' } will replace the filed Image:FILE to Target:FILE"
},
'MS_REMAP_PATH': {
'value':
None,
'description':
'When modelscope dataset name is not None, that means you use the dataset from modelscope,'
' default is None. But if you want to use the datalist from modelscope and the file from '
'local device, you can use this field to set the root path of your images. '
},
'TRIGGER_WORDS': {
'value':
'',
'description':
'The words used to describe the common features of your data, especially when you customize a '
'tuner. Use these words you can get what you want.'
},
'HIGHLIGHT_KEYWORDS': {
'value':
'',
'description':
'The keywords you want to highlight in prompt, which will be replace by <HIGHLIGHT_KEYWORDS>.'
},
'KEYWORDS_SIGN': {
'value':
'',
'description':
'The keywords sign you want to add, which is like <{HIGHLIGHT_KEYWORDS}{KEYWORDS_SIGN}>'
},
}
def __init__(self, cfg, logger=None):
super().__init__(cfg=cfg, logger=logger)
from modelscope import MsDataset
from modelscope.utils.constant import DownloadMode
ms_dataset_name = cfg.get('MS_DATASET_NAME', None)
ms_dataset_namespace = cfg.get('MS_DATASET_NAMESPACE', None)
ms_dataset_subname = cfg.get('MS_DATASET_SUBNAME', None)
ms_dataset_split = cfg.get('MS_DATASET_SPLIT', 'train')
ms_remap_keys = cfg.get('MS_REMAP_KEYS', None)
ms_remap_path = cfg.get('MS_REMAP_PATH', None)
self.max_seq_len = cfg.get('MAX_SEQ_LEN', 1024)
self.max_aspect_ratio = cfg.get('MAX_ASPECT_RATIO', 4)
self.d = cfg.get('DOWNSAMPLE_RATIO', 16)
self.replace_style = cfg.get('REPLACE_STYLE', False)
self.trigger_words = cfg.get('TRIGGER_WORDS', '')
self.replace_keywords = cfg.get('HIGHLIGHT_KEYWORDS', '')
self.keywords_sign = cfg.get('KEYWORDS_SIGN', '')
self.add_indicator = cfg.get('ADD_INDICATOR', False)
# Use modelscope dataset
if not ms_dataset_name:
raise ValueError(
'Your must set MS_DATASET_NAME as modelscope dataset or your local dataset orignized '
'as modelscope dataset.')
if FS.exists(ms_dataset_name):
ms_dataset_name = FS.get_dir_to_local_dir(ms_dataset_name)
self.ms_dataset_name = ms_dataset_name
# ms_remap_path = ms_dataset_name
try:
self.data = MsDataset.load(str(ms_dataset_name),
namespace=ms_dataset_namespace,
subset_name=ms_dataset_subname,
split=ms_dataset_split)
except Exception:
self.logger.info(
"Load Modelscope dataset failed, retry with download_mode='force_redownload'."
)
try:
self.data = MsDataset.load(
str(ms_dataset_name),
namespace=ms_dataset_namespace,
subset_name=ms_dataset_subname,
split=ms_dataset_split,
download_mode=DownloadMode.FORCE_REDOWNLOAD)
except Exception as sec_e:
raise ValueError(f'Load Modelscope dataset failed {sec_e}.')
if ms_remap_keys:
self.data = self.data.remap_columns(ms_remap_keys.get_dict())
if ms_remap_path:
def map_func(example):
return {
k: os.path.join(ms_remap_path, v)
if k.endswith(':FILE') else v
for k, v in example.items()
}
self.data = self.data.ds_instance.map(map_func)
self.transforms = T.Compose([
T.ToTensor(),
T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def __len__(self):
if self.mode == 'train':
return sys.maxsize
else:
return len(self.data)
def _get(self, index: int):
current_data = self.data[index % len(self.data)]
tar_image_path = current_data.get('Target:FILE', '')
src_image_path = current_data.get('Source:FILE', '')
style = current_data.get('Style', '')
prompt = current_data.get('Prompt', current_data.get('prompt', ''))
if self.replace_style and not style == '':
prompt = prompt.replace(style, f'<{self.keywords_sign}>')
elif not self.replace_keywords.strip() == '':
prompt = prompt.replace(
self.replace_keywords,
'<' + self.replace_keywords + f'{self.keywords_sign}>')
if not self.trigger_words == '':
prompt = self.trigger_words.strip() + ' ' + prompt
src_image = self.load_image(self.ms_dataset_name,
src_image_path,
cvt_type='RGB')
tar_image = self.load_image(self.ms_dataset_name,
tar_image_path,
cvt_type='RGB')
src_image = self.image_preprocess(src_image)
tar_image = self.image_preprocess(tar_image)
tar_image = self.transforms(tar_image)
src_image = self.transforms(src_image)
src_mask = torch.ones_like(src_image[[0]])
tar_mask = torch.ones_like(tar_image[[0]])
if self.add_indicator:
if '{image}' not in prompt:
prompt = '{image}, ' + prompt
return {
'edit_image': [src_image],
'edit_image_mask': [src_mask],
'image': tar_image,
'image_mask': tar_mask,
'prompt': [prompt],
}
def load_image(self, prefix, img_path, cvt_type=None):
if img_path is None or img_path == '':
return None
img_path = os.path.join(prefix, img_path)
with FS.get_object(img_path) as image_bytes:
image = Image.open(io.BytesIO(image_bytes))
if cvt_type is not None:
image = pillow_convert(image, cvt_type)
return image
def image_preprocess(self,
img,
size=None,
interpolation=InterpolationMode.BILINEAR):
H, W = img.height, img.width
if H / W > self.max_aspect_ratio:
img = T.CenterCrop((self.max_aspect_ratio * W, W))(img)
elif W / H > self.max_aspect_ratio:
img = T.CenterCrop((H, self.max_aspect_ratio * H))(img)
if size is None:
# resize image for max_seq_len, while keep the aspect ratio
H, W = img.height, img.width
scale = min(
1.0,
math.sqrt(self.max_seq_len / ((H / self.d) * (W / self.d))))
rH = int(
H * scale) // self.d * self.d # ensure divisible by self.d
rW = int(W * scale) // self.d * self.d
else:
rH, rW = size
img = T.Resize((rH, rW), interpolation=interpolation,
antialias=True)(img)
return np.array(img, dtype=np.uint8)
@staticmethod
def get_config_template():
return dict_to_yaml('DATASet',
__class__.__name__,
ACEDemoDataset.para_dict,
set_name=True)
@staticmethod
def collate_fn(batch):
collect = defaultdict(list)
for sample in batch:
for k, v in sample.items():
collect[k].append(v)
new_batch = dict()
for k, v in collect.items():
if all([i is None for i in v]):
new_batch[k] = None
else:
new_batch[k] = v
return new_batch
|