File size: 1,890 Bytes
0196a59
1a3d12e
 
 
 
 
 
0196a59
 
1a3d12e
0196a59
1a3d12e
 
 
 
 
0196a59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a3d12e
 
 
0196a59
 
 
 
 
1a3d12e
 
 
 
0196a59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
from openai import OpenAI
import os
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

"""
OpenAI Chat Completion API integration
"""

GEAI_API_KEY = os.getenv("GEAI_API_KEY")
GEAI_API_BASE_URL = os.getenv("GEAI_API_BASE_URL")

client = OpenAI(api_key=GEAI_API_KEY, base_url=GEAI_API_BASE_URL)


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for chunk in client.chat.completions.create(
        model="openai/gpt-4o-mini",
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        if chunk.choices[0].delta.content is not None:
            token = chunk.choices[0].delta.content
            response += token
            yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)


if __name__ == "__main__":
    demo.launch()