Spaces:
Sleeping
Sleeping
File size: 21,577 Bytes
0679bae 3db551d 0679bae 3db551d 0679bae 92d794f 38f0a6e 0679bae 92d794f 0679bae 08d5f22 0679bae 33f6090 0679bae 33f6090 0679bae 33f6090 0679bae 08d5f22 0679bae 08d5f22 0679bae 08d5f22 0679bae 08d5f22 0679bae 08d5f22 0679bae 08d5f22 0679bae 292135e 0679bae 292135e 0679bae 292135e 0679bae 292135e 0679bae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 |
#!/usr/bin/env python
import pandas as pd
import numpy as np
import plotly.express as px
def get_best_alpha(stats_df, modality):
'''
Takes a DataFrame of scMKL results and returns the alpha with the best mean AUROC
stats_df: a DataFrame
modality: the modality to find the best alpha for
Returns best alpha for modality
'''
best_alpha["None", "Estrogen Response Early", "Estrogen Response Late", "Protein Secretion", "E2F Targets", "TGF Beta Signaling", "Apical Surface"] = stats_df[(stats_df['Model'] == 'scMKL') & (stats_df['Modality'] == modality)][['Alpha', 'AUROC']].groupby('Alpha')['AUROC'].apply(lambda x: np.mean(x))
best_alpha = best_alpha[best_alpha == np.max(alpha_star)].index[0]
return best_alpha
def format_datatype_grouping(dtype_grouping):
'''
Takes either a list | tuple | str and formats the names to match labels in dataframes
Returns formatted names as list or str
'''
if (type(dtype_grouping) == list) or (type(dtype_grouping) == tuple):
formatted_data = [selection.replace("Hallmark", "hallmark").replace("Cistrome", "cistrome").replace("Motifs", "motifs").replace("Neuronal","neuronal") for selection in dtype_grouping]
else:
formatted_data = dtype_grouping.replace("Hallmark", "hallmark").replace("Cistrome", "cistrome").replace("Motifs", "motifs").replace("Neuronal","neuronal")
return formatted_data
def performance_boxplot(stats_df: pd.DataFrame, dataset: str, modality, metric: str, x_flag = "intersect", x_var = 'Alpha', color_dict = None):
'''
This function will plot a given metric for a given dataset.
stats_df: a DataFrame with columns
dataset: MCF7, T47D, lymphoma, prostate
modality: which modality or modalities should be visualized
metric: which metric should be displayed
Returns a plotnine object
'''
# Formatting modality list
modality = format_datatype_grouping(modality)
# Filtering data frame to desired dataset and modality(s)
stats_df = stats_df[(stats_df['Dataset'] == dataset) & (np.isin(stats_df['Modality'], modality)) & (stats_df['Model'] == 'scMKL')]
if ((type(modality) is list) or (type(modality) is tuple)) and (x_flag == "intersect"):
x_list = np.unique(stats_df[x_var])
for i, mod in enumerate(modality):
x_list = [value for value in x_list if value in np.unique(stats_df[stats_df['Modality'] == mod][x_var])]
stats_df = stats_df[np.isin(stats_df[x_var], x_list)]
if x_flag == 'best':
stats_df = stats_df[stats_df['Alpha Star'] == 'Yes']
modality_alpha_means = {mod : round(np.mean(stats_df[stats_df['Modality'] == mod]['Alpha']), 3) for mod in np.unique(stats_df['Modality'])}
stats_df['Mean Alpha Star'] = stats_df['Modality'].apply(lambda x: modality_alpha_means[x])
x_var = 'Mean Alpha Star' if x_var == 'Alpha' else x_var
if x_var == 'Mean_Number_of_Selected_Groups':
for mod in modality:
stats_df.loc[stats_df['Modality'] == mod, 'Mean_Number_of_Selected_Groups'] = np.mean(stats_df[stats_df['Modality'] == mod]['Number_of_Selected_Groups'])
# Making x_var catagorical for plotting
if (metric == 'RAM_usage') or (metric == 'Inference_time'):
x_var = 'Modality'
else:
stats_df = stats_df.sort_values(by = x_var)
stats_df[x_var] = pd.Categorical(stats_df[x_var], categories = np.unique(stats_df[x_var])) if 'Alpha' not in x_var else pd.Categorical(stats_df[x_var], categories = np.unique(stats_df[x_var])[::-1])
# performance_bp = (ggplot(stats_df, aes(x = x_var, y = metric, fill = 'Modality', label = 'Modality', color = 'Modality'))
# + geom_boxplot()
# + theme_classic()
# # + scale_fill_manual(values = {'ATAC - cistrome' : '#2e61a3', 'ATAC - hallmark' : '#323aa8', 'ATAC - motifs' : "#05426e",
# # 'ATAC_TFIDF - cistrome' : '#32b3b8', 'ATAC_TFIDF - hallmark' : '#349eeb',
# # 'RNA - hallmark' : '#b52a3c',
# # 'GENE SCORES - hallmark' : '#11bd50'},)
# + theme(axis_text_x=element_text(rotation=90))
# + ggtitle(dataset.capitalize() if len(dataset) > 4 else dataset)
# + theme(axis_text_x= element_text(weight = 'bold', size = 10), axis_text_y= element_text(weight = 'bold'))
# # + geom_text()
# # + geom_text(aes(label=after_stat(stats_df['Modality'])), stat="identity", nudge_y=0.125, va="bottom")
# )
# return performance_bp.draw()
if x_var != 'Modality':
max_x = max(np.unique(stats_df[x_var]))
min_x = min(np.unique(stats_df[x_var]))
range_x = max_x - min_x
width_x = range_x * 0.02
else:
width_x = None
performance_bp = px.box(
data_frame = stats_df,
x = x_var,
y = metric,
color = 'Modality',
template = 'plotly_white',
height = 800,
hover_name = 'Modality',
category_orders = {'Modality' : modality},
color_discrete_map = color_dict
).update_traces(width = width_x,
).update_layout(
hovermode = 'x unified',
hoverlabel=dict(
bgcolor="white",
font_size=16,
namelength = 40),
font = dict(
size = 20
)
).update_xaxes(autorange = 'reversed' if x_var == 'Alpha' else None)
return performance_bp
def comparison_boxplot(stats_df: pd.DataFrame, dataset: str, model, metric: str):
'''
Takes a DataFrame a makes a box plot of the selected metric for the purpose of comparing models
Returns a plotly object of different model performances
'''
# Filtering dataframe to desired dataset
stats_df = stats_df[stats_df['Dataset'] == dataset]
# Subsetting scMKL list
subset_modalities = ['RNA - hallmark', 'ATAC - hallmark', 'ATAC_TFIDF - hallmark', 'RNA - all',
'RNA - hallmark', 'ATAC - mvf', 'ATAC - hallmark', 'GENE_SCORES - hallmark']
# Removing genescore for lymphoma MAKE THIS BETTER
if dataset == "lymphoma":
stats_df = stats_df[(stats_df['Modality'] != 'GENE_SCORES - hallmark') & (stats_df['Modality'] != 'GENE_SCORES - all')]
# Filtering dataframe to desired models
stats_df = stats_df[np.isin(stats_df['Model'], model)]
# Filtering scMKL runs to best runs
if 'scMKL' in model:
stats_df = stats_df[(stats_df['Alpha Star'] == 'Yes') | (stats_df['Model'] != 'scMKL')]
stats_df = stats_df[np.isin(stats_df['Modality'], subset_modalities)]
stats_df['Model (Modality)'] = stats_df['Model'] + " (" + stats_df['Modality'] + ")"
# Getting order of lowest to highest performance by model and modality
group_order = stats_df[[metric, 'Model (Modality)']].groupby('Model (Modality)').apply(lambda x: np.mean(x)).sort_values().index
stats_df['Model (Modality)'] = pd.Categorical(stats_df['Model (Modality)'], categories = group_order)
# models_bp = (ggplot(stats_df, aes(x = 'Model (Modality)', y = metric, fill = 'Model', color = "Model"))
# + geom_boxplot()
# + theme_classic()
# + scale_fill_manual(values = {'scMKL' : "#e60b0f", "XGBoost" : "#1411ab", "MLP" : "#11ab1e"})
# + scale_color_manual(values = {'scMKL' : "#e60b0f", "XGBoost" : "#1411ab", "MLP" : "#11ab1e"})
# + theme(axis_text_x=element_text(rotation=90))
# + ggtitle(dataset.capitalize() if len(dataset) > 4 else dataset)
# + theme(axis_text_x= element_text(weight = 'bold', size = 10), axis_text_y= element_text(weight = 'bold'))
# )
# return models_bp.draw()
models_bp = px.box(
data_frame = stats_df,
x = 'Model (Modality)',
y = metric,
color = 'Model',
template = 'plotly_white',
height = 700,
category_orders = {'Model' : ['scMKL', 'XGBoost', 'MLP'],
'Model (Modality)' : group_order},
color_discrete_map = {
'scMKL' : 'red',
'XGBoost' : 'blue',
'MLP' : 'green'
}
).update_traces(width = 0.75,
).update_layout(
hovermode = 'x unified',
hoverlabel=dict(
bgcolor="white",
font_size=16,
namelength = 40),
font = dict(
size = 20
)
)
return models_bp
def plot_umap(umap_dict, modality, dataset, grouping, label, subset):
'''
Takes a dictionary of dict[RNA | ATAC][dataset][Embeddings | Cell labels | Silhouette Score]
Returns a plotly object of UMAP embeddings
'''
if subset == "None":
subset_features = "Most Variable Features"
elif grouping == 'Hallmark':
subset_features = grouping.lower() + '_HALLMARK_' + subset.replace(" ", "_").upper()
elif grouping == 'JASPAR':
subset_features = 'motifs_' + subset
else:
subset_features = grouping.lower() + "_" + subset.replace(" ", "_")
umap_df = pd.DataFrame(umap_dict[modality][dataset][subset_features]['Embeddings'])
umap_df = umap_df.rename(columns = {0 : "UMAP_1", 1 : "UMAP_2", 2 : "UMAP_3"})
umap_df[label] = np.array(umap_dict[modality][dataset][subset_features]["Cell Labels"][label])
# umap_plot = (ggplot(umap_df, aes(x = 'UMAP_1', y = 'UMAP_2', color = label))
# + geom_point(size = 0.75)
# + theme_classic()
# + ggtitle("Silhouette Score: " + str(round(umap_dict[modality][dataset][subset_features]["Silhouette Scores"][label], 3)) if type(umap_dict[modality][dataset][subset_features]["Silhouette Scores"][label]) != str else umap_dict[modality][dataset][subset_features]["Silhouette Scores"][label])
# )
# return umap_plot.draw()
# umap_plot = px.scatter(
# data_frame = umap_df,
# x = 'UMAP_1',
# y = 'UMAP_2',
# color = label,
# template = 'plotly_white',
# ).update_layout(
# hoverlabel=dict(
# font_size=16,
# namelength = 40),
# font = dict(
# size = 20
# )
# )
umap_plot = px.scatter_3d(
data_frame = umap_df,
x = 'UMAP_1',
y = 'UMAP_2',
z = 'UMAP_3',
color = label,
template = 'plotly_white',
height = 650,
).update_layout(
hoverlabel=dict(
font_size=16,
namelength = 40),
# font = dict(
# size = 1
# )
).update_traces(
marker=dict(size=3))
return umap_plot
def weights_boxplot(norm_df: pd.DataFrame, dataset, modality, shown_groups = 9):
'''
norm_df: a dataframe with columns: Group, alpha. norm, mean_weight, log_mean_weights, nonzero, proportion_selected
shown_groups: either a number or list-like object to be displayed in the plot
- if a number, most frequently selected groups are shown
returns a plotly object
'''
modality = format_datatype_grouping(modality)
norm_df = norm_df[(norm_df['Dataset'] == dataset) & (norm_df['Modality'] == modality)]
if type(shown_groups) == int:
rowsums = norm_df.groupby(['Group'], observed = False).sum('Proportion Selected').sort_values('Proportion Selected')
top_groups = np.array(rowsums.index)[-shown_groups:]
norm_df = norm_df[norm_df.Group.isin(top_groups)]
else:
norm_df = norm_df.iloc[np.where(np.isin(norm_df['Group'], shown_groups))[0], :]
# Building a boxplot of normalized weights
# norm_plot = (ggplot(norm_df)
# + geom_boxplot(aes(x = 'Alpha', y = 'Norm', fill = 'Group', group = "Alpha"))
# + scale_x_continuous(breaks = np.unique(norm_df.Alpha))
# + theme(figure_size=(1000,1000), axis_text_x= element_text(weight = 'bold'))
# + theme_classic()
# + guides(fill = False)
# + facet_wrap("Group")
# + ggtitle(dataset.capitalize() if len(dataset) > 4 else dataset))
# return norm_plot.draw()
norm_df['Alpha'] = norm_df['Alpha'].astype(str)
norm_plot = px.box(
data_frame = norm_df,
x = 'Alpha',
y = 'Norm',
color = 'Group',
template = 'plotly_white',
height = 700,
facet_col = 'Group',
facet_col_wrap = 3,
category_orders = {'Group' : top_groups[::-1],
'Alpha' : np.unique(norm_df['Alpha'])[::-1]}
).update_traces(
width = 0.75,
).update_yaxes(title = ''
).update_xaxes(title = ''
).update_layout(
hovermode = 'x unified',
hoverlabel=dict(
bgcolor="white",
font_size=16,
namelength = 40),
font = dict(
size = 20
),
showlegend = False,
yaxis4=dict(title = "Normalized Weight"),
xaxis2 = dict(title = "Alpha")
).for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1].replace("_", " "))
)
return norm_plot
def plot_features(selections_df, dataset, modality):
'''
Takes feature selection_df and returns the selected features for that experiment as a plot
NOTE: if motifs in modality selection, returns None
Returns a plotly object as a bar plot of top selected features
'''
modality = format_datatype_grouping(modality)
if 'motif' in modality:
return None
# Formatting DataFrame
selections_df = selections_df[(selections_df['Dataset'] == dataset) & (selections_df['Modality'] == modality)]
selections_df = selections_df.sort_values(by = 'selection', ascending = True)
selections_df['feature'] = pd.Categorical(selections_df['feature'], categories = selections_df['feature'])
selections_df = selections_df.iloc[(len(selections_df) - 40):len(selections_df), :]
# gf_bar = (ggplot(selections_df, aes(y = 'selection', x = 'feature'))
# + geom_bar(stat = 'identity', fill = "#3268a8")
# + theme_bw()
# + ggtitle('Top 50 Features')
# + xlab('Top Selected Features')
# + ylab('scMKL Selection Frequency')
# + coord_flip()
# + theme(axis_text_y= element_text(weight = 'bold'), axis_text_x= element_text(weight = 'bold'))
# )
# return gf_bar
gf_bar = px.bar(
data_frame = selections_df,
orientation = 'h',
x = 'selection',
y = 'feature',
template = 'plotly_white',
color = 'Number of Groups Feature in',
height = 700,
color_continuous_scale = px.colors.sequential.Bluered,
).update_layout(
xaxis = dict(title = 'Times Selected by scMKL'),
yaxis = dict(title = 'Features'),
font = dict(size = 12),
)
return gf_bar
def create_volcano(vol_df, dataset, modality, grouping, group, grouping_dict):
'''
Takes a processed DataFrame and plots adj. p-value by log(fold_change)
Returns a plotly object
'''
if dataset == "song_prostate":
dataset = 'prostate_rna'
elif dataset == 'prostate':
dataset = 'prostate_atac'
reg_colors = {'Up-regulated' : 'green',
'Down-regulated' : 'red',
'Not significant' : 'blue'}
vol_df = vol_df[vol_df['Dataset'] == dataset]
if "RNA" == modality:
lfc = "logfoldchanges"
label_name = 'names'
modality = "RNA"
adj_pval = 'pvals_adj'
if group != "None":
group = "HALLMARK_" + group.replace(" ", "_").upper()
vol_df = vol_df[np.isin(vol_df['names'], list(grouping_dict[dataset]['RNA'][grouping][group]))]
# vol_plot = (ggplot(vol_df, aes(y = "-log10(adjusted p-val)", x = lfc, color = "Enrichment", label = label_name))
# + geom_point(size = 0.5)
# + theme_classic()
# # + geom_text(data = vol_df[np.isin(vol_df[label_name], selected)] ,
# # size = 8
# # )
# + geom_vline(xintercept = [-0.38, 0.38], linetype = "dotted", color = ['black', 'black'])
# + geom_hline(yintercept = -np.log10(0.05), linetype = "solid", color = 'black')
# + ggtitle(f"{dataset.capitalize() if len(dataset) > 4 else dataset} - {modality}")
# )
else:
lfc = "log2(fold_change)"
label_name = 'feature name'
modality = "ATAC"
adj_pval = 'adjusted p-value'
vol_df['Enrichment'] = vol_df['Enrichment'].apply(lambda x: 'Up-regulated' if 'Up' in x else x)
vol_df['Enrichment'] = vol_df['Enrichment'].apply(lambda x: 'Down-regulated' if 'Down' in x else x)
if group != "None":
if grouping == "Hallmark":
group = "HALLMARK_" + group.upper().replace(" ", "_")
vol_df = vol_df[np.isin(vol_df['feature name'], list(grouping_dict[dataset]['ATAC'][grouping][group]))]
# vol_plot = (ggplot(vol_df, aes(y = "-log10(adjusted p-val)", x = lfc, color = "Enrichment", label = label_name))
# + geom_point(size = 0.5)
# + theme_classic()
# + geom_vline(xintercept = [-0.38, 0.38], linetype = "dotted", color = ['black', 'black'])
# + geom_hline(yintercept = -np.log10(0.05), linetype = "solid", color = 'black')
# + ggtitle(f"{dataset.capitalize() if len(dataset) > 4 else dataset} - {modality}")
# )
# return vol_plot.draw()
vol_plot = px.scatter(
data_frame = vol_df,
x = lfc,
y = '-log10(adjusted p-val)',
color = 'Enrichment',
template = 'plotly_white',
hover_name = label_name,
hover_data = adj_pval,
color_discrete_map = reg_colors,
height = 650,
).update_layout(
hoverlabel=dict(
font_size=16,
namelength = 40),
font = dict(
size = 20
)
)
return vol_plot
def gene_distribution(freq_df):
'''
Takes a DataFrame of genes, number of groups gene is in and returns a distribution of gene frequency in grouping.
Returns a plotly histogram of gene frequencies.
'''
freq_plot = px.histogram(
data_frame = freq_df,
x = 'Number of Sets',
template = 'plotly_white',
color_discrete_sequence = ['blue'],
log_y = True,
title = "Distribution of Hallmark Gene Overlap"
).update_layout(
font = dict(size = 16),
yaxis = dict(title = "log(Counts)"))
return freq_plot
def GO_plot(GO_df, dataset):
'''
Takes gene enrichment DataFrame and returns a horizontal barplot of gene set enrichment for go biological processes.
Returns a plotly barplot object.
'''
GO_df = GO_df[GO_df['Dataset'] == dataset]
GO_df = GO_df.sort_values(by = 'GSE (-log10(adj. p-val))', ascending = False)[0:30].reset_index()
GO_df = GO_df.rename(columns = {"Group Name" : "Gene Sets"})
GO_df['Gene Sets'] = GO_df['Gene Sets'].apply(lambda x: x.split(" (")[0])
GO_fig = px.bar(
data_frame = GO_df,
x = 'GSE (-log10(adj. p-val))',
y = 'Gene Sets',
color_discrete_sequence = ['pink'],
template = 'plotly_white',
category_orders = {'Gene Sets' : GO_df['Gene Sets']},
height = 700,
).update_layout(
yaxis = dict(dtick = 1),
font = dict(size = 16),
)
return GO_fig
def hallmark_genesets_plot(hallmark_df, dataset):
'''
Takes a geneset enrichment barplot for hallmark gene sets and returns gene set enrichment for hallmark gene sets.
Returns a plotly bar plot object.
'''
hallmark_df = hallmark_df[hallmark_df['Dataset'] == dataset]
order_df = hallmark_df[hallmark_df['Variable'] == 'Proportion of DE Features'].copy()
order = order_df.sort_values(by = 'Value', ascending = False)['Group']
order = order.tolist()
hallmark_plot = px.bar(
data_frame = hallmark_df,
orientation = 'h',
x = 'Value',
y = 'Group',
facet_col = 'Variable',
color = 'Variable',
template = 'plotly_white',
height = 900,
category_orders = {'Variable' : ['Proportion of DE Features', 'Gene Set Enrichment (-log10(adjusted p-value))', 'scMKL Selection Frequency'],
'Group' : order},
hover_name = 'Group',
color_discrete_sequence = ['blue', "orange", "red"]
).update_layout(
yaxis = dict(title = 'Gene Sets', dtick = 1),
font = dict(size = 16),
xaxis1 = dict(title = "Proportion of DEG Overlap with Hallmark Gene Sets"),
xaxis2 = dict(title = "-log10(adjuseted p-value)"),
xaxis3 = dict(title = "Times selected by scMKL"),
showlegend = False
).update_xaxes(matches=None
).for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1].replace("_", " "))
)
return hallmark_plot |