File size: 21,577 Bytes
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db551d
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3db551d
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d794f
38f0a6e
 
0679bae
92d794f
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d5f22
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33f6090
0679bae
 
 
 
 
 
 
 
 
 
33f6090
 
0679bae
33f6090
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d5f22
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d5f22
0679bae
 
 
 
08d5f22
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d5f22
 
 
 
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d5f22
 
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08d5f22
 
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292135e
0679bae
 
 
 
 
292135e
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292135e
 
 
 
 
0679bae
 
 
 
 
 
 
 
 
292135e
 
0679bae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#!/usr/bin/env python

import pandas as pd
import numpy as np
import plotly.express as px


def get_best_alpha(stats_df, modality):
    '''
    Takes a DataFrame of scMKL results and returns the alpha with the best mean AUROC
    stats_df: a DataFrame
    modality: the modality to find the best alpha for
    Returns best alpha for modality
    '''
    best_alpha["None", "Estrogen Response Early", "Estrogen Response Late", "Protein Secretion", "E2F Targets", "TGF Beta Signaling", "Apical Surface"] = stats_df[(stats_df['Model'] == 'scMKL') & (stats_df['Modality'] == modality)][['Alpha', 'AUROC']].groupby('Alpha')['AUROC'].apply(lambda x: np.mean(x))
    best_alpha = best_alpha[best_alpha == np.max(alpha_star)].index[0]
    return best_alpha


def format_datatype_grouping(dtype_grouping):
    '''
    Takes either a list | tuple | str and formats the names to match labels in dataframes
    Returns formatted names as list or str
    '''
    if (type(dtype_grouping) == list) or (type(dtype_grouping) == tuple):
        formatted_data = [selection.replace("Hallmark", "hallmark").replace("Cistrome", "cistrome").replace("Motifs", "motifs").replace("Neuronal","neuronal") for selection in dtype_grouping]
    else:
        formatted_data = dtype_grouping.replace("Hallmark", "hallmark").replace("Cistrome", "cistrome").replace("Motifs", "motifs").replace("Neuronal","neuronal")

    return formatted_data

def performance_boxplot(stats_df: pd.DataFrame, dataset: str, modality, metric: str, x_flag = "intersect", x_var = 'Alpha', color_dict = None):
    '''
    This function will plot a given metric for a given dataset.
        stats_df: a DataFrame with columns 
        dataset: MCF7, T47D, lymphoma, prostate
        modality: which modality or modalities should be visualized
        metric: which metric should be displayed
    Returns a plotnine object        
    '''
    # Formatting modality list
    modality = format_datatype_grouping(modality)

    # Filtering data frame to desired dataset and modality(s)
    stats_df = stats_df[(stats_df['Dataset'] == dataset) & (np.isin(stats_df['Modality'], modality)) & (stats_df['Model'] == 'scMKL')]
    if ((type(modality) is list) or (type(modality) is tuple)) and (x_flag == "intersect"):
        x_list = np.unique(stats_df[x_var])
        for i, mod in enumerate(modality):
            x_list = [value for value in x_list if value in np.unique(stats_df[stats_df['Modality'] == mod][x_var])]
        stats_df = stats_df[np.isin(stats_df[x_var], x_list)]

    if x_flag == 'best':
        stats_df = stats_df[stats_df['Alpha Star'] == 'Yes']
        modality_alpha_means = {mod : round(np.mean(stats_df[stats_df['Modality'] == mod]['Alpha']), 3) for mod in np.unique(stats_df['Modality'])}
        stats_df['Mean Alpha Star'] = stats_df['Modality'].apply(lambda x: modality_alpha_means[x])
        x_var = 'Mean Alpha Star' if x_var == 'Alpha' else x_var
        if x_var == 'Mean_Number_of_Selected_Groups':
            for mod in modality:
                stats_df.loc[stats_df['Modality'] == mod, 'Mean_Number_of_Selected_Groups'] = np.mean(stats_df[stats_df['Modality'] == mod]['Number_of_Selected_Groups'])


    # Making x_var catagorical for plotting
    if (metric == 'RAM_usage') or (metric == 'Inference_time'):
        x_var = 'Modality'
    else:
        stats_df = stats_df.sort_values(by = x_var)
        stats_df[x_var] = pd.Categorical(stats_df[x_var], categories = np.unique(stats_df[x_var])) if 'Alpha' not in x_var else pd.Categorical(stats_df[x_var], categories = np.unique(stats_df[x_var])[::-1])


    # performance_bp = (ggplot(stats_df, aes(x = x_var, y = metric, fill = 'Modality', label = 'Modality', color = 'Modality'))
    #                   + geom_boxplot()
    #                   + theme_classic()
    #                 #   + scale_fill_manual(values = {'ATAC - cistrome' : '#2e61a3', 'ATAC - hallmark' : '#323aa8',  'ATAC - motifs' : "#05426e",
    #                 #                                 'ATAC_TFIDF - cistrome' : '#32b3b8', 'ATAC_TFIDF - hallmark' : '#349eeb',
    #                 #                                 'RNA - hallmark' : '#b52a3c', 
    #                 #                                 'GENE SCORES - hallmark' : '#11bd50'},)
    #                   + theme(axis_text_x=element_text(rotation=90))
    #                   + ggtitle(dataset.capitalize() if len(dataset) > 4 else dataset)
    #                   + theme(axis_text_x= element_text(weight = 'bold', size = 10), axis_text_y= element_text(weight = 'bold'))
    #                 #   + geom_text()
    #                 #   + geom_text(aes(label=after_stat(stats_df['Modality'])), stat="identity", nudge_y=0.125, va="bottom")
    #                   )
    
    # return performance_bp.draw()

    if x_var != 'Modality':
        max_x = max(np.unique(stats_df[x_var]))
        min_x = min(np.unique(stats_df[x_var]))
        range_x = max_x - min_x
        width_x = range_x * 0.02
    else:
        width_x = None


    performance_bp = px.box(
        data_frame = stats_df,
        x = x_var,
        y = metric,
        color = 'Modality',
        template = 'plotly_white',
        height = 800,
        hover_name = 'Modality',
        category_orders = {'Modality' : modality},
        color_discrete_map = color_dict
        ).update_traces(width = width_x,
        ).update_layout(
            hovermode = 'x unified',
            hoverlabel=dict(
                bgcolor="white",
                font_size=16,
                namelength = 40),
            font = dict(
                size = 20
            )
        ).update_xaxes(autorange = 'reversed' if x_var == 'Alpha' else None)

    return performance_bp


def comparison_boxplot(stats_df: pd.DataFrame, dataset: str, model, metric: str):
    '''
    Takes a DataFrame a makes a box plot of the selected metric for the purpose of comparing models
    Returns a plotly object of different model performances
    '''
    # Filtering dataframe to desired dataset
    stats_df = stats_df[stats_df['Dataset'] == dataset]

    # Subsetting scMKL list
    subset_modalities = ['RNA - hallmark', 'ATAC - hallmark', 'ATAC_TFIDF - hallmark', 'RNA - all', 
                        'RNA - hallmark', 'ATAC - mvf', 'ATAC - hallmark', 'GENE_SCORES - hallmark']

    # Removing genescore for lymphoma MAKE THIS BETTER
    if dataset == "lymphoma":
        stats_df = stats_df[(stats_df['Modality'] != 'GENE_SCORES - hallmark') & (stats_df['Modality'] != 'GENE_SCORES - all')]
    
    # Filtering dataframe to desired models
    stats_df = stats_df[np.isin(stats_df['Model'], model)]
    
    # Filtering scMKL runs to best runs
    if 'scMKL' in model:
        stats_df = stats_df[(stats_df['Alpha Star'] == 'Yes') | (stats_df['Model'] != 'scMKL')]
        stats_df = stats_df[np.isin(stats_df['Modality'], subset_modalities)]

    stats_df['Model (Modality)'] = stats_df['Model'] + " (" + stats_df['Modality'] + ")"

    # Getting order of lowest to highest performance by model and modality
    group_order = stats_df[[metric, 'Model (Modality)']].groupby('Model (Modality)').apply(lambda x: np.mean(x)).sort_values().index
    stats_df['Model (Modality)'] = pd.Categorical(stats_df['Model (Modality)'], categories = group_order) 

    # models_bp = (ggplot(stats_df, aes(x = 'Model (Modality)', y = metric, fill = 'Model', color = "Model"))
    #                   + geom_boxplot()
    #                   + theme_classic()
    #                   + scale_fill_manual(values = {'scMKL' : "#e60b0f", "XGBoost" : "#1411ab", "MLP" : "#11ab1e"})
    #                   + scale_color_manual(values = {'scMKL' : "#e60b0f", "XGBoost" : "#1411ab", "MLP" : "#11ab1e"})
    #                   + theme(axis_text_x=element_text(rotation=90))
    #                   + ggtitle(dataset.capitalize() if len(dataset) > 4 else dataset)
    #                   + theme(axis_text_x= element_text(weight = 'bold', size = 10), axis_text_y= element_text(weight = 'bold'))
    #                   )
    
    # return models_bp.draw()
    

    models_bp = px.box(
        data_frame = stats_df,
        x = 'Model (Modality)',
        y = metric,
        color = 'Model',
        template = 'plotly_white',
        height = 700,
        category_orders = {'Model' : ['scMKL', 'XGBoost', 'MLP'],
                            'Model (Modality)' : group_order},
        color_discrete_map = {
            'scMKL' : 'red',
            'XGBoost' : 'blue',
            'MLP' : 'green'
            }
        ).update_traces(width = 0.75,
        ).update_layout(
            hovermode = 'x unified',
            hoverlabel=dict(
                bgcolor="white",
                font_size=16,
                namelength = 40),
            font = dict(
                size = 20
            )
        )

    return models_bp


def plot_umap(umap_dict, modality, dataset, grouping, label, subset):
    '''
    Takes a dictionary of dict[RNA | ATAC][dataset][Embeddings | Cell labels | Silhouette Score]
    Returns a plotly object of UMAP embeddings
    '''

    if subset == "None":
        subset_features = "Most Variable Features"
    elif grouping == 'Hallmark':
        subset_features = grouping.lower() + '_HALLMARK_' + subset.replace(" ", "_").upper()
    elif grouping == 'JASPAR':
        subset_features = 'motifs_' + subset
    else:
        subset_features = grouping.lower() + "_" + subset.replace(" ", "_")

    umap_df = pd.DataFrame(umap_dict[modality][dataset][subset_features]['Embeddings'])

    umap_df = umap_df.rename(columns = {0 : "UMAP_1", 1 : "UMAP_2", 2 : "UMAP_3"})
    umap_df[label] = np.array(umap_dict[modality][dataset][subset_features]["Cell Labels"][label])
    # umap_plot = (ggplot(umap_df, aes(x = 'UMAP_1', y = 'UMAP_2', color = label))
    #             + geom_point(size = 0.75)
    #             + theme_classic()
    #             + ggtitle("Silhouette Score: " + str(round(umap_dict[modality][dataset][subset_features]["Silhouette Scores"][label], 3)) if type(umap_dict[modality][dataset][subset_features]["Silhouette Scores"][label]) != str else umap_dict[modality][dataset][subset_features]["Silhouette Scores"][label])
    #             )

    # return umap_plot.draw()

    # umap_plot = px.scatter(
    #     data_frame = umap_df,
    #     x = 'UMAP_1',
    #     y = 'UMAP_2',
    #     color = label,
    #     template = 'plotly_white',
    # ).update_layout(
    #         hoverlabel=dict(
    #             font_size=16,
    #             namelength = 40),
    #         font = dict(
    #             size = 20
    #         )
    # )

    umap_plot = px.scatter_3d(
        data_frame = umap_df,
        x = 'UMAP_1',
        y = 'UMAP_2',
        z = 'UMAP_3',
        color = label,
        template = 'plotly_white',
        height = 650,
    ).update_layout(
            hoverlabel=dict(
                font_size=16,
                namelength = 40),
            # font = dict(
            #     size = 1
            # )
    ).update_traces(
        marker=dict(size=3))

    return umap_plot


def weights_boxplot(norm_df: pd.DataFrame, dataset, modality, shown_groups = 9):
    '''
    norm_df: a dataframe with columns: Group, alpha. norm, mean_weight, log_mean_weights, nonzero, proportion_selected
    shown_groups: either a number or list-like object to be displayed in the plot
        - if a number, most frequently selected groups are shown
    returns a plotly object
    '''

    modality = format_datatype_grouping(modality)

    norm_df = norm_df[(norm_df['Dataset'] == dataset) & (norm_df['Modality'] == modality)]

    if type(shown_groups) == int:
        rowsums = norm_df.groupby(['Group'], observed = False).sum('Proportion Selected').sort_values('Proportion Selected')
        top_groups = np.array(rowsums.index)[-shown_groups:]
        norm_df = norm_df[norm_df.Group.isin(top_groups)]
    else:
        norm_df = norm_df.iloc[np.where(np.isin(norm_df['Group'], shown_groups))[0], :]

    # Building a boxplot of normalized weights
    # norm_plot = (ggplot(norm_df)
    #                 +  geom_boxplot(aes(x = 'Alpha', y = 'Norm', fill = 'Group', group = "Alpha"))
    #                 +  scale_x_continuous(breaks = np.unique(norm_df.Alpha))
    #                 +  theme(figure_size=(1000,1000), axis_text_x= element_text(weight = 'bold'))
    #                 +  theme_classic()
    #                 + guides(fill = False)
    #                 + facet_wrap("Group")
    #                 + ggtitle(dataset.capitalize() if len(dataset) > 4 else dataset))

    # return norm_plot.draw()

    norm_df['Alpha'] = norm_df['Alpha'].astype(str)

    norm_plot = px.box(
        data_frame = norm_df,
        x = 'Alpha',
        y = 'Norm',
        color = 'Group',
        template = 'plotly_white',
        height = 700,
        facet_col = 'Group',
        facet_col_wrap = 3,
        category_orders = {'Group' : top_groups[::-1],
                           'Alpha' : np.unique(norm_df['Alpha'])[::-1]}
        ).update_traces(
            width = 0.75,
        ).update_yaxes(title = ''
        ).update_xaxes(title = ''
        ).update_layout(
            hovermode = 'x unified',
            hoverlabel=dict(
                bgcolor="white",
                font_size=16,
                namelength = 40),
            font = dict(
                size = 20
            ),
            showlegend = False,
            yaxis4=dict(title = "Normalized Weight"),
            xaxis2 = dict(title = "Alpha")
        ).for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1].replace("_", " "))
        )
        

    return norm_plot


def plot_features(selections_df, dataset, modality):
    '''
    Takes feature selection_df and returns the selected features for that experiment as a plot
    NOTE: if motifs in modality selection, returns None
    Returns a plotly object as a bar plot of top selected features
    '''
    
    modality = format_datatype_grouping(modality)

    if 'motif' in modality:
        return None

    # Formatting DataFrame
    selections_df = selections_df[(selections_df['Dataset'] == dataset) & (selections_df['Modality'] == modality)]
    selections_df = selections_df.sort_values(by = 'selection', ascending = True)
    selections_df['feature'] = pd.Categorical(selections_df['feature'], categories = selections_df['feature'])
    selections_df = selections_df.iloc[(len(selections_df) - 40):len(selections_df), :]

#     gf_bar = (ggplot(selections_df, aes(y = 'selection', x = 'feature'))
#     + geom_bar(stat = 'identity', fill = "#3268a8")
#     + theme_bw()
#     + ggtitle('Top 50 Features')
#     + xlab('Top Selected Features')
#     + ylab('scMKL Selection Frequency')
#     + coord_flip()
#     + theme(axis_text_y= element_text(weight = 'bold'), axis_text_x= element_text(weight = 'bold'))
# ) 
#     return gf_bar

    gf_bar = px.bar(
        data_frame = selections_df,
        orientation = 'h',
        x = 'selection',
        y = 'feature',
        template = 'plotly_white',
        color = 'Number of Groups Feature in',
        height = 700,
        color_continuous_scale = px.colors.sequential.Bluered,
    ).update_layout(
        xaxis = dict(title = 'Times Selected by scMKL'),
        yaxis = dict(title = 'Features'),
        font = dict(size = 12),
        
    )

    return gf_bar


def create_volcano(vol_df, dataset, modality, grouping, group, grouping_dict):
    '''
    Takes a processed DataFrame and plots adj. p-value by log(fold_change)
    Returns a plotly object
    '''
    if dataset == "song_prostate":
        dataset = 'prostate_rna'
    elif dataset == 'prostate':
        dataset = 'prostate_atac'

    reg_colors = {'Up-regulated' : 'green',
                'Down-regulated' : 'red',
                'Not significant' : 'blue'}

    vol_df = vol_df[vol_df['Dataset'] == dataset]

    if "RNA" == modality:
        lfc = "logfoldchanges"
        label_name = 'names'
        modality = "RNA"
        adj_pval = 'pvals_adj'

        if group != "None":
            group = "HALLMARK_" + group.replace(" ", "_").upper()
            vol_df = vol_df[np.isin(vol_df['names'], list(grouping_dict[dataset]['RNA'][grouping][group]))]

        # vol_plot = (ggplot(vol_df, aes(y = "-log10(adjusted p-val)", x = lfc, color = "Enrichment", label = label_name))
        #         + geom_point(size = 0.5)
        #         + theme_classic()
        #         # + geom_text(data = vol_df[np.isin(vol_df[label_name], selected)] , 
        #         #             size = 8
        #         #             )
        #         + geom_vline(xintercept = [-0.38, 0.38], linetype = "dotted", color = ['black', 'black'])
        #         + geom_hline(yintercept = -np.log10(0.05), linetype = "solid", color = 'black')
        #         + ggtitle(f"{dataset.capitalize() if len(dataset) > 4 else dataset} - {modality}")
        #         )

    else:
        lfc = "log2(fold_change)"
        label_name = 'feature name'
        modality = "ATAC"
        adj_pval = 'adjusted p-value'
        vol_df['Enrichment'] = vol_df['Enrichment'].apply(lambda x: 'Up-regulated' if 'Up' in x else x)
        vol_df['Enrichment'] = vol_df['Enrichment'].apply(lambda x: 'Down-regulated' if 'Down' in x else x)

        if group != "None":
            if grouping == "Hallmark":
                group = "HALLMARK_" + group.upper().replace(" ", "_")
            vol_df = vol_df[np.isin(vol_df['feature name'], list(grouping_dict[dataset]['ATAC'][grouping][group]))]

    #     vol_plot = (ggplot(vol_df, aes(y = "-log10(adjusted p-val)", x = lfc, color = "Enrichment", label = label_name))
    #     + geom_point(size = 0.5)
    #     + theme_classic()
    #     + geom_vline(xintercept = [-0.38, 0.38], linetype = "dotted", color = ['black', 'black'])
    #     + geom_hline(yintercept = -np.log10(0.05), linetype = "solid", color = 'black')
    #     + ggtitle(f"{dataset.capitalize() if len(dataset) > 4 else dataset} - {modality}")
    #     )

    # return vol_plot.draw()

    vol_plot = px.scatter(
        data_frame = vol_df,
        x = lfc,
        y = '-log10(adjusted p-val)',
        color = 'Enrichment',
        template = 'plotly_white',
        hover_name = label_name,
        hover_data = adj_pval,
        color_discrete_map = reg_colors,
        height = 650,
    ).update_layout(
            hoverlabel=dict(
                font_size=16,
                namelength = 40),
            font = dict(
                size = 20
            )
    )

    return vol_plot


def gene_distribution(freq_df):
    '''
    Takes a DataFrame of genes, number of groups gene is in and returns a distribution of gene frequency in grouping.
    Returns a plotly histogram of gene frequencies.
    '''
    freq_plot = px.histogram(
        data_frame = freq_df,
        x = 'Number of Sets',
        template = 'plotly_white',
        color_discrete_sequence = ['blue'],
        log_y = True,
        title = "Distribution of Hallmark Gene Overlap"
        ).update_layout(
            font = dict(size = 16),
            yaxis = dict(title = "log(Counts)"))

    return freq_plot


def GO_plot(GO_df, dataset):
    '''
    Takes gene enrichment DataFrame and returns a horizontal barplot of gene set enrichment for go biological processes.
    Returns a plotly barplot object.
    '''
    GO_df = GO_df[GO_df['Dataset'] == dataset]

    GO_df = GO_df.sort_values(by = 'GSE (-log10(adj. p-val))', ascending = False)[0:30].reset_index()
    GO_df = GO_df.rename(columns = {"Group Name" : "Gene Sets"})
    GO_df['Gene Sets'] = GO_df['Gene Sets'].apply(lambda x: x.split(" (")[0])

    GO_fig = px.bar(
        data_frame = GO_df,
        x = 'GSE (-log10(adj. p-val))',
        y = 'Gene Sets',
        color_discrete_sequence = ['pink'],
        template = 'plotly_white',
        category_orders = {'Gene Sets' : GO_df['Gene Sets']},
        height = 700,
    ).update_layout(
        yaxis = dict(dtick = 1),
        font = dict(size = 16),
        
        
    )

    return GO_fig


def hallmark_genesets_plot(hallmark_df, dataset):
    '''
    Takes a geneset enrichment barplot for hallmark gene sets and returns gene set enrichment for hallmark gene sets.
    Returns a plotly bar plot object.
    '''
    hallmark_df = hallmark_df[hallmark_df['Dataset'] == dataset]

    order_df = hallmark_df[hallmark_df['Variable'] == 'Proportion of DE Features'].copy()
    order = order_df.sort_values(by = 'Value', ascending = False)['Group']
    order = order.tolist()

    hallmark_plot = px.bar(
        data_frame = hallmark_df,
        orientation = 'h',
        x = 'Value',
        y = 'Group',
        facet_col = 'Variable',
        color = 'Variable',
        template = 'plotly_white',
        height = 900,
        category_orders = {'Variable' : ['Proportion of DE Features', 'Gene Set Enrichment (-log10(adjusted p-value))', 'scMKL Selection Frequency'],
                           'Group' : order},
        hover_name = 'Group',
        color_discrete_sequence = ['blue', "orange", "red"]
    ).update_layout(
        yaxis = dict(title = 'Gene Sets', dtick = 1),
        font = dict(size = 16),
        xaxis1 = dict(title = "Proportion of DEG Overlap with Hallmark Gene Sets"),
        xaxis2 = dict(title = "-log10(adjuseted p-value)"),
        xaxis3 = dict(title = "Times selected by scMKL"),
        showlegend = False
        
    ).update_xaxes(matches=None
    ).for_each_annotation(lambda a: a.update(text=a.text.split("=")[-1].replace("_", " "))
        )

    return hallmark_plot