Spaces:
Paused
Paused
File size: 15,071 Bytes
119e1fd e6c18de 2796d4a 119e1fd 2796d4a 119e1fd d9a75b6 119e1fd d9a75b6 119e1fd d9a75b6 119e1fd 152930f 119e1fd 152930f 119e1fd d9a75b6 119e1fd d9a75b6 119e1fd d9a75b6 119e1fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
import dotenv
dotenv.load_dotenv(override=True)
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import spaces
import gradio as gr
import os
import argparse
import random
from datetime import datetime
import torch
from torchvision.transforms.functional import to_pil_image, to_tensor
from accelerate import Accelerator
from omnigen2.pipelines.omnigen2.pipeline_omnigen2 import OmniGen2Pipeline
from omnigen2.utils.img_util import create_collage
from omnigen2.schedulers.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from omnigen2.schedulers.scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
NEGATIVE_PROMPT = "(((deformed))), blurry, over saturation, bad anatomy, disfigured, poorly drawn face, mutation, mutated, (extra_limb), (ugly), (poorly drawn hands), fused fingers, messy drawing, broken legs censor, censored, censor_bar"
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
pipeline = None
accelerator = None
save_images = False
def load_pipeline(accelerator, weight_dtype, args):
pipeline = OmniGen2Pipeline.from_pretrained(
args.model_path,
torch_dtype=weight_dtype,
trust_remote_code=True,
)
if args.enable_sequential_cpu_offload:
pipeline.enable_sequential_cpu_offload()
elif args.enable_model_cpu_offload:
pipeline.enable_model_cpu_offload()
else:
pipeline = pipeline.to(accelerator.device)
return pipeline
@spaces.GPU(duration=180)
def run(
prompt,
width_input=1024,
height_input=1024,
scheduler='euler',
num_inference_steps=50,
image_input_1=None,
image_input_2=None,
image_input_3=None,
negative_prompt=NEGATIVE_PROMPT,
guidance_scale_input=5.0,
img_guidance_scale_input=2.0,
cfg_range_start=0.0,
cfg_range_end=1.0,
num_images_per_prompt=1,
max_input_image_side_length=2048,
max_pixels=1024 * 1024,
seed_input=-1,
progress=gr.Progress(),
):
"""
Generate and/or edit images based on text prompts and optional input images using the OmniGen2 pipeline.
Quick Tips for Best Results:
- Generate high-resolution images (at least 512x512 recommended).
- Be Specific: Instead of "Add bird to desk", try "Add the bird from image 1 to the desk in image 2".
- Use English: English prompts currently yield better results.
- Adjust image_guidance_scale for better consistency with the reference image:
- Image Editing: 1.3 - 2.0
- In-context Generation: 2.0 - 3.0
Args:
prompt: Text prompt describing the desired image generation or editing task.
width_input: Width of the output image in pixels (default: 1024).
height_input: Height of the output image in pixels (default: 1024).
scheduler: Scheduler type to use ('euler' or 'dpmsolver') (default: 'euler').
num_inference_steps: Number of denoising steps (default: 50).
image_input_1: Optional first input image for editing/reference (default: None).
image_input_2: Optional second input image for editing/reference (default: None).
image_input_3: Optional third input image for editing/reference (default: None).
negative_prompt: Text describing what to avoid in the generation (default: NEGATIVE_PROMPT).
guidance_scale_input: Text guidance scale for controlling prompt adherence (default: 5.0).
img_guidance_scale_input: Image guidance scale for controlling input image adherence (default: 2.0).
cfg_range_start: Start of the classifier-free guidance range (0.0-1.0) (default: 0.0).
cfg_range_end: End of the classifier-free guidance range (0.0-1.0) (default: 1.0).
num_images_per_prompt: Number of images to generate per prompt (default: 1).
max_input_image_side_length: Maximum side length for input images (default: 2048).
max_pixels: Maximum total pixels for input images (default: 1048576).
seed_input: Random seed for reproducible generation (-1 for random) (default: -1).
progress: Gradio progress tracker. (Can be None when not ran on Gradio)
Returns:
PIL.Image: Generated image or collage of multiple generated images.
"""
input_images = [image_input_1, image_input_2, image_input_3]
input_images = [img for img in input_images if img is not None]
if len(input_images) == 0:
input_images = None
if seed_input == -1:
seed_input = random.randint(0, 2**16 - 1)
generator = torch.Generator(device=accelerator.device).manual_seed(seed_input)
def progress_callback(cur_step, timesteps):
frac = (cur_step + 1) / float(timesteps)
progress(frac)
if scheduler == 'euler':
pipeline.scheduler = FlowMatchEulerDiscreteScheduler()
elif scheduler == 'dpmsolver':
pipeline.scheduler = DPMSolverMultistepScheduler(
algorithm_type="dpmsolver++",
solver_type="midpoint",
solver_order=2,
prediction_type="flow_prediction",
)
results = pipeline(
prompt=prompt,
input_images=input_images,
width=width_input,
height=height_input,
max_input_image_side_length=max_input_image_side_length,
max_pixels=max_pixels,
num_inference_steps=num_inference_steps,
max_sequence_length=1024,
text_guidance_scale=guidance_scale_input,
image_guidance_scale=img_guidance_scale_input,
cfg_range=(cfg_range_start, cfg_range_end),
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
generator=generator,
output_type="pil",
step_func=progress_callback,
)
progress(1.0)
vis_images = [to_tensor(image) * 2 - 1 for image in results.images]
output_image = create_collage(vis_images)
if save_images:
# Create outputs directory if it doesn't exist
output_dir = os.path.join(ROOT_DIR, "outputs_gradio")
os.makedirs(output_dir, exist_ok=True)
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y_%m_%d-%H_%M_%S")
# Generate unique filename with timestamp
output_path = os.path.join(output_dir, f"{timestamp}.png")
# Save the image
output_image.save(output_path)
# Save All Generated Images
if len(results.images) > 1:
for i, image in enumerate(results.images):
image_name, ext = os.path.splitext(output_path)
image.save(f"{image_name}_{i}{ext}")
return output_image
description = """
### 💡 Quick Tips for Best Results (see our [github](https://github.com/VectorSpaceLab/OmniGen2?tab=readme-ov-file#-usage-tips) for more details)
- Image Quality: Use high-resolution images (at least 512x512 recommended).
- Be Specific: Instead of "Add bird to desk", try "Add the bird from image 1 to the desk in image 2".
- Use English: English prompts currently yield better results.
- Adjust image_guidance_scale for better consistency with the reference image:
- Image Editing: 1.3 - 2.0
- In-context Generation: 2.0 - 3.0
"""
article = """
```bibtex
@article{wu2025omnigen2,
title={OmniGen2: Exploration to Advanced Multimodal Generation},
author={Chenyuan Wu and Pengfei Zheng and Ruiran Yan and Shitao Xiao and Xin Luo and Yueze Wang and Wanli Li and Xiyan Jiang and Yexin Liu and Junjie Zhou and Ze Liu and Ziyi Xia and Chaofan Li and Haoge Deng and Jiahao Wang and Kun Luo and Bo Zhang and Defu Lian and Xinlong Wang and Zhongyuan Wang and Tiejun Huang and Zheng Liu},
journal={arXiv preprint arXiv:2506.18871},
year={2025}
}
```
"""
def main(args):
# Gradio
with gr.Blocks() as demo:
gr.Markdown(
"# OmniGen2: Exploration to Advanced Multimodal Generation [paper](https://arxiv.org/abs/2506.18871) [code](https://github.com/VectorSpaceLab/OmniGen2)"
)
gr.Markdown(description)
with gr.Row():
with gr.Column():
# text prompt
prompt = gr.Textbox(
label='Enter your prompt. Use "first/second image" as reference.',
placeholder="Type your prompt here...",
)
with gr.Row(equal_height=True):
# input images
image_input_1 = gr.Image(label="First Image", type="pil")
image_input_2 = gr.Image(label="Second Image", type="pil")
image_input_3 = gr.Image(label="Third Image", type="pil")
generate_button = gr.Button("Generate Image")
negative_prompt = gr.Textbox(
label="Enter your negative prompt",
placeholder="Type your negative prompt here...",
value=NEGATIVE_PROMPT,
)
# slider
with gr.Row(equal_height=True):
height_input = gr.Slider(
label="Height", minimum=256, maximum=1024, value=1024, step=128
)
width_input = gr.Slider(
label="Width", minimum=256, maximum=1024, value=1024, step=128
)
with gr.Row(equal_height=True):
text_guidance_scale_input = gr.Slider(
label="Text Guidance Scale",
minimum=1.0,
maximum=8.0,
value=5.0,
step=0.1,
)
image_guidance_scale_input = gr.Slider(
label="Image Guidance Scale",
minimum=1.0,
maximum=3.0,
value=2.0,
step=0.1,
)
with gr.Row(equal_height=True):
cfg_range_start = gr.Slider(
label="CFG Range Start",
minimum=0.0,
maximum=1.0,
value=0.0,
step=0.1,
)
cfg_range_end = gr.Slider(
label="CFG Range End",
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
)
def adjust_end_slider(start_val, end_val):
return max(start_val, end_val)
def adjust_start_slider(end_val, start_val):
return min(end_val, start_val)
cfg_range_start.input(
fn=adjust_end_slider,
inputs=[cfg_range_start, cfg_range_end],
outputs=[cfg_range_end]
)
cfg_range_end.input(
fn=adjust_start_slider,
inputs=[cfg_range_end, cfg_range_start],
outputs=[cfg_range_start]
)
with gr.Row(equal_height=True):
scheduler_input = gr.Dropdown(
label="Scheduler",
choices=["euler", "dpmsolver"],
value="euler",
info="The scheduler to use for the model.",
)
num_inference_steps = gr.Slider(
label="Inference Steps", minimum=20, maximum=100, value=50, step=1
)
with gr.Row(equal_height=True):
num_images_per_prompt = gr.Slider(
label="Number of images per prompt",
minimum=1,
maximum=4,
value=1,
step=1,
)
seed_input = gr.Slider(
label="Seed", minimum=-1, maximum=2147483647, value=0, step=1
)
with gr.Row(equal_height=True):
max_input_image_side_length = gr.Slider(
label="max_input_image_side_length",
minimum=256,
maximum=2048,
value=2048,
step=256,
)
max_pixels = gr.Slider(
label="max_pixels",
minimum=256 * 256,
maximum=1536 * 1536,
value=1024 * 1024,
step=256 * 256,
)
with gr.Column():
with gr.Column():
# output image
output_image = gr.Image(label="Output Image")
global save_images
save_images = gr.Checkbox(label="Save generated images", value=False)
global accelerator
global pipeline
bf16 = True
accelerator = Accelerator(mixed_precision="bf16" if bf16 else "no")
weight_dtype = torch.bfloat16 if bf16 else torch.float32
pipeline = load_pipeline(accelerator, weight_dtype, args)
# click
generate_button.click(
run,
inputs=[
prompt,
width_input,
height_input,
scheduler_input,
num_inference_steps,
image_input_1,
image_input_2,
image_input_3,
negative_prompt,
text_guidance_scale_input,
image_guidance_scale_input,
cfg_range_start,
cfg_range_end,
num_images_per_prompt,
max_input_image_side_length,
max_pixels,
seed_input,
],
outputs=output_image,
)
gr.Markdown(article)
# launch
demo.launch(share=args.share, server_port=args.port, allowed_paths=[ROOT_DIR], mcp_server=True)
def parse_args():
parser = argparse.ArgumentParser(description="Run the OmniGen2")
parser.add_argument("--share", action="store_true", help="Share the Gradio app")
parser.add_argument(
"--port", type=int, default=7860, help="Port to use for the Gradio app"
)
parser.add_argument(
"--model_path",
type=str,
default="OmniGen2/OmniGen2",
help="Path or HuggingFace name of the model to load."
)
parser.add_argument(
"--enable_model_cpu_offload",
action="store_true",
help="Enable model CPU offload."
)
parser.add_argument(
"--enable_sequential_cpu_offload",
action="store_true",
help="Enable sequential CPU offload."
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)
|