File size: 6,021 Bytes
5a1edc8 e444c96 5a1edc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import cv2
import numpy as np
import time
#import os
#import datetime
#from datetime import datetime
#from PIL import Image
#from io import BytesIO
#import requests
#from scipy import ndimage
INPUT_WIDTH = 320
INPUT_HEIGHT = 320
SCORE_THRESHOLD = 0.45
NMS_THRESHOLD = 0.45
CONFIDENCE_THRESHOLD = 0.5
# Text parameters.
FONT_FACE = cv2.FONT_HERSHEY_SIMPLEX
FONT_SCALE = 0.7
THICKNESS = 1
# Colors.
BLACK = (0,0,0)
BLUE = (255,178,50)
YELLOW = (0,255,255)
classesFile = "coco.names"
classes = None
ch_detection_modelWeights = "best_upwork.onnx"
ch_detection_model = cv2.dnn.readNet(ch_detection_modelWeights)
x_=["-","0","1","2","3","4","5","6","7","8","9"]
def draw_label(im, label, x, y):
"""Draw text onto image at location."""
# Get text size.
text_size = cv2.getTextSize(label, FONT_FACE, FONT_SCALE, THICKNESS)
dim, baseline = text_size[0], text_size[1]
# Use text size to create a BLACK rectangle.
cv2.rectangle(im, (x,y), (x + dim[0], y + dim[1] + baseline), (0,0,0), cv2.FILLED);
# Display text inside the rectangle.
cv2.putText(im, label, (x, y + dim[1]), FONT_FACE, FONT_SCALE, YELLOW, THICKNESS, cv2.LINE_AA)
def pre_process(input_image, net,w,h):
# Create a 4D blob from a frame.
#print(input_image.shape)
blob = cv2.dnn.blobFromImage(input_image, 1/255, (w, h), [0,0,0], 1, crop=False)
# Sets the input to the network.
net.setInput(blob)
# Run the forward pass to get output of the output layers.
outputs = net.forward(net.getUnconnectedOutLayersNames())
return outputs
def get_xyxy(input_image,image_height,image_width, outputs,w,h):
# Lists to hold respective values while unwrapping.
class_ids = []
confidences = []
boxes = []
output_boxes=[]
results_cls_id=[]
# Rows.
rows = outputs[0].shape[1]
x_factor = image_width / w
y_factor = image_height / h
# Iterate through detections.
for r in range(rows):
row = outputs[0][0][r]
confidence = row[4]
# Discard bad detections and continue.
if confidence >= CONFIDENCE_THRESHOLD:
classes_scores = row[5:]
# Get the index of max class score.
class_id = np.argmax(classes_scores)
# Continue if the class score is above threshold.
if (classes_scores[class_id] > SCORE_THRESHOLD):
confidences.append(confidence)
class_ids.append(class_id)
cx, cy, w, h = row[0], row[1], row[2], row[3]
left = int((cx - w/2) * x_factor)
top = int((cy - h/2) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
box = np.array([left, top, width, height,])
boxes.append(box)
# Perform non maximum suppression to eliminate redundant, overlapping boxes with lower confidences.
indices = cv2.dnn.NMSBoxes(boxes, confidences, CONFIDENCE_THRESHOLD, NMS_THRESHOLD)
for i in indices:
box = boxes[i]
left = box[0]
top = box[1]
width = box[2]
height = box[3]
results_cls_id.append(class_ids[i])
cv2.rectangle(input_image, (left, top), (left + width, top + height), BLUE, 1)
boxes[i][2]=left + width
boxes[i][3]=top + height
#check if the height is suitable
output_boxes.append(boxes[i])
cv2.imwrite('x1.jpg',input_image)
return output_boxes,results_cls_id #boxes (left,top,width,height)
def char_det(input_image,ch_detection_model,w,h):
#in_image_copy=input_image.copy()
detections = pre_process(input_image.copy(), ch_detection_model,w,h) #detection results
image_height=input_image.shape[0]
image_width=input_image.shape[1]
bounding_boxes=get_xyxy(input_image,image_height,image_width, detections,w,h)
#date = datetime.now().strftime("%Y_%m_%d_%I_%M_%S_%p")
#im_name=f"ch_{date}.jpg"
#print(im_name)
#cv2.imwrite(im_name,image_with_bounding_boxes)
# cv2.imwrite('x1.jpg',image_with_bounding_boxes)
return bounding_boxes
def rearange_(array_pred,results_cls_id):
scores=''
#print(y2,y2[:,0])
ind=np.argsort(array_pred[:,0])
#print(license_image.shape[0],ind)
for indx in (ind):
scores=scores+x_[results_cls_id[indx]]
return scores
def main_func(img,):
scores=0
t1=time.time()
img = np.array(img)
im2=img.copy()
#send_im_2_tg(img)
#cv2.imwrite(f"inp.jpg",img)
width_height_diff=img.shape[1]-img.shape[0] #padding
#print(width_height_diff,img.shape)
if width_height_diff>0:
img = cv2.copyMakeBorder(img, 0, width_height_diff, 0, 0, cv2.BORDER_CONSTANT, (0,0,0))
if width_height_diff<0:
img = cv2.copyMakeBorder(img, 0, 0, 0, int(-1*width_height_diff), cv2.BORDER_CONSTANT, (0,0,0))
cropped_chars_array,results_cls_id=char_det(img.copy(),ch_detection_model,320,320)
if len(cropped_chars_array)!=0:
cropped_chars_array=np.asarray(cropped_chars_array)
scores=rearange_(cropped_chars_array,results_cls_id)
for box in cropped_chars_array:
left,top,width,height=box
cv2.rectangle(im2, (left, top), (width,height), BLUE, 1)
time_of_process=(time.time()-t1)
#return scores,time_of_process
return scores,im2,time_of_process
import gradio as gr
def final_func():
gr.Interface(fn=main_func,
inputs=gr.Image(),
outputs=[gr.Textbox(lines=1, label="Scores"),gr.Image(label="Image"),gr.Number(label="Time")],examples=["test.png"]).launch()
if __name__ == "__main__":
final_func() |