Spaces:
Running
Running
File size: 18,387 Bytes
847e3e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import argparse
import os
from difflib import SequenceMatcher
import Levenshtein
import numpy as np
from tqdm import tqdm
from helpers import write_lines, read_parallel_lines, encode_verb_form, \
apply_reverse_transformation, SEQ_DELIMETERS, START_TOKEN
def perfect_align(t, T, insertions_allowed=0,
cost_function=Levenshtein.distance):
# dp[i, j, k] is a minimal cost of matching first `i` tokens of `t` with
# first `j` tokens of `T`, after making `k` insertions after last match of
# token from `t`. In other words t[:i] aligned with T[:j].
# Initialize with INFINITY (unknown)
shape = (len(t) + 1, len(T) + 1, insertions_allowed + 1)
dp = np.ones(shape, dtype=int) * int(1e9)
come_from = np.ones(shape, dtype=int) * int(1e9)
come_from_ins = np.ones(shape, dtype=int) * int(1e9)
dp[0, 0, 0] = 0 # The only known starting point. Nothing matched to nothing.
for i in range(len(t) + 1): # Go inclusive
for j in range(len(T) + 1): # Go inclusive
for q in range(insertions_allowed + 1): # Go inclusive
if i < len(t):
# Given matched sequence of t[:i] and T[:j], match token
# t[i] with following tokens T[j:k].
for k in range(j, len(T) + 1):
transform = \
apply_transformation(t[i], ' '.join(T[j:k]))
if transform:
cost = 0
else:
cost = cost_function(t[i], ' '.join(T[j:k]))
current = dp[i, j, q] + cost
if dp[i + 1, k, 0] > current:
dp[i + 1, k, 0] = current
come_from[i + 1, k, 0] = j
come_from_ins[i + 1, k, 0] = q
if q < insertions_allowed:
# Given matched sequence of t[:i] and T[:j], create
# insertion with following tokens T[j:k].
for k in range(j, len(T) + 1):
cost = len(' '.join(T[j:k]))
current = dp[i, j, q] + cost
if dp[i, k, q + 1] > current:
dp[i, k, q + 1] = current
come_from[i, k, q + 1] = j
come_from_ins[i, k, q + 1] = q
# Solution is in the dp[len(t), len(T), *]. Backtracking from there.
alignment = []
i = len(t)
j = len(T)
q = dp[i, j, :].argmin()
while i > 0 or q > 0:
is_insert = (come_from_ins[i, j, q] != q) and (q != 0)
j, k, q = come_from[i, j, q], j, come_from_ins[i, j, q]
if not is_insert:
i -= 1
if is_insert:
alignment.append(['INSERT', T[j:k], (i, i)])
else:
alignment.append([f'REPLACE_{t[i]}', T[j:k], (i, i + 1)])
assert j == 0
return dp[len(t), len(T)].min(), list(reversed(alignment))
def _split(token):
if not token:
return []
parts = token.split()
return parts or [token]
def apply_merge_transformation(source_tokens, target_words, shift_idx):
edits = []
if len(source_tokens) > 1 and len(target_words) == 1:
# check merge
transform = check_merge(source_tokens, target_words)
if transform:
for i in range(len(source_tokens) - 1):
edits.append([(shift_idx + i, shift_idx + i + 1), transform])
return edits
if len(source_tokens) == len(target_words) == 2:
# check swap
transform = check_swap(source_tokens, target_words)
if transform:
edits.append([(shift_idx, shift_idx + 1), transform])
return edits
def is_sent_ok(sent, delimeters=SEQ_DELIMETERS):
for del_val in delimeters.values():
if del_val in sent and del_val != delimeters["tokens"]:
return False
return True
def check_casetype(source_token, target_token):
if source_token.lower() != target_token.lower():
return None
if source_token.lower() == target_token:
return "$TRANSFORM_CASE_LOWER"
elif source_token.capitalize() == target_token:
return "$TRANSFORM_CASE_CAPITAL"
elif source_token.upper() == target_token:
return "$TRANSFORM_CASE_UPPER"
elif source_token[1:].capitalize() == target_token[1:] and source_token[0] == target_token[0]:
return "$TRANSFORM_CASE_CAPITAL_1"
elif source_token[:-1].upper() == target_token[:-1] and source_token[-1] == target_token[-1]:
return "$TRANSFORM_CASE_UPPER_-1"
else:
return None
def check_equal(source_token, target_token):
if source_token == target_token:
return "$KEEP"
else:
return None
def check_split(source_token, target_tokens):
if source_token.split("-") == target_tokens:
return "$TRANSFORM_SPLIT_HYPHEN"
else:
return None
def check_merge(source_tokens, target_tokens):
if "".join(source_tokens) == "".join(target_tokens):
return "$MERGE_SPACE"
elif "-".join(source_tokens) == "-".join(target_tokens):
return "$MERGE_HYPHEN"
else:
return None
def check_swap(source_tokens, target_tokens):
if source_tokens == [x for x in reversed(target_tokens)]:
return "$MERGE_SWAP"
else:
return None
def check_plural(source_token, target_token):
if source_token.endswith("s") and source_token[:-1] == target_token:
return "$TRANSFORM_AGREEMENT_SINGULAR"
elif target_token.endswith("s") and source_token == target_token[:-1]:
return "$TRANSFORM_AGREEMENT_PLURAL"
else:
return None
def check_verb(source_token, target_token):
encoding = encode_verb_form(source_token, target_token)
if encoding:
return f"$TRANSFORM_VERB_{encoding}"
else:
return None
def apply_transformation(source_token, target_token):
target_tokens = target_token.split()
if len(target_tokens) > 1:
# check split
transform = check_split(source_token, target_tokens)
if transform:
return transform
checks = [check_equal, check_casetype, check_verb, check_plural]
for check in checks:
transform = check(source_token, target_token)
if transform:
return transform
return None
def align_sequences(source_sent, target_sent):
# check if sent is OK
if not is_sent_ok(source_sent) or not is_sent_ok(target_sent):
return None
source_tokens = source_sent.split()
target_tokens = target_sent.split()
matcher = SequenceMatcher(None, source_tokens, target_tokens)
diffs = list(matcher.get_opcodes())
all_edits = []
for diff in diffs:
tag, i1, i2, j1, j2 = diff
source_part = _split(" ".join(source_tokens[i1:i2]))
target_part = _split(" ".join(target_tokens[j1:j2]))
if tag == 'equal':
continue
elif tag == 'delete':
# delete all words separatly
for j in range(i2 - i1):
edit = [(i1 + j, i1 + j + 1), '$DELETE']
all_edits.append(edit)
elif tag == 'insert':
# append to the previous word
for target_token in target_part:
edit = ((i1 - 1, i1), f"$APPEND_{target_token}")
all_edits.append(edit)
else:
# check merge first of all
edits = apply_merge_transformation(source_part, target_part,
shift_idx=i1)
if edits:
all_edits.extend(edits)
continue
# normalize alignments if need (make them singleton)
_, alignments = perfect_align(source_part, target_part,
insertions_allowed=0)
for alignment in alignments:
new_shift = alignment[2][0]
edits = convert_alignments_into_edits(alignment,
shift_idx=i1 + new_shift)
all_edits.extend(edits)
# get labels
labels = convert_edits_into_labels(source_tokens, all_edits)
# match tags to source tokens
sent_with_tags = add_labels_to_the_tokens(source_tokens, labels)
return sent_with_tags
def convert_edits_into_labels(source_tokens, all_edits):
# make sure that edits are flat
flat_edits = []
for edit in all_edits:
(start, end), edit_operations = edit
if isinstance(edit_operations, list):
for operation in edit_operations:
new_edit = [(start, end), operation]
flat_edits.append(new_edit)
elif isinstance(edit_operations, str):
flat_edits.append(edit)
else:
raise Exception("Unknown operation type")
all_edits = flat_edits[:]
labels = []
total_labels = len(source_tokens) + 1
if not all_edits:
labels = [["$KEEP"] for x in range(total_labels)]
else:
for i in range(total_labels):
edit_operations = [x[1] for x in all_edits if x[0][0] == i - 1
and x[0][1] == i]
if not edit_operations:
labels.append(["$KEEP"])
else:
labels.append(edit_operations)
return labels
def convert_alignments_into_edits(alignment, shift_idx):
edits = []
action, target_tokens, new_idx = alignment
source_token = action.replace("REPLACE_", "")
# check if delete
if not target_tokens:
edit = [(shift_idx, 1 + shift_idx), "$DELETE"]
return [edit]
# check splits
for i in range(1, len(target_tokens)):
target_token = " ".join(target_tokens[:i + 1])
transform = apply_transformation(source_token, target_token)
if transform:
edit = [(shift_idx, shift_idx + 1), transform]
edits.append(edit)
target_tokens = target_tokens[i + 1:]
for target in target_tokens:
edits.append([(shift_idx, shift_idx + 1), f"$APPEND_{target}"])
return edits
transform_costs = []
transforms = []
for target_token in target_tokens:
transform = apply_transformation(source_token, target_token)
if transform:
cost = 0
transforms.append(transform)
else:
cost = Levenshtein.distance(source_token, target_token)
transforms.append(None)
transform_costs.append(cost)
min_cost_idx = transform_costs.index(min(transform_costs))
# append to the previous word
for i in range(0, min_cost_idx):
target = target_tokens[i]
edit = [(shift_idx - 1, shift_idx), f"$APPEND_{target}"]
edits.append(edit)
# replace/transform target word
transform = transforms[min_cost_idx]
target = transform if transform is not None \
else f"$REPLACE_{target_tokens[min_cost_idx]}"
edit = [(shift_idx, 1 + shift_idx), target]
edits.append(edit)
# append to this word
for i in range(min_cost_idx + 1, len(target_tokens)):
target = target_tokens[i]
edit = [(shift_idx, 1 + shift_idx), f"$APPEND_{target}"]
edits.append(edit)
return edits
def add_labels_to_the_tokens(source_tokens, labels, delimeters=SEQ_DELIMETERS):
tokens_with_all_tags = []
source_tokens_with_start = [START_TOKEN] + source_tokens
for token, label_list in zip(source_tokens_with_start, labels):
all_tags = delimeters['operations'].join(label_list)
comb_record = token + delimeters['labels'] + all_tags
tokens_with_all_tags.append(comb_record)
return delimeters['tokens'].join(tokens_with_all_tags)
def convert_data_from_raw_files(source_file, target_file, output_file, chunk_size):
tagged = []
source_data, target_data = read_parallel_lines(source_file, target_file)
print(f"The size of raw dataset is {len(source_data)}")
cnt_total, cnt_all, cnt_tp = 0, 0, 0
for source_sent, target_sent in tqdm(zip(source_data, target_data)):
try:
aligned_sent = align_sequences(source_sent, target_sent)
except Exception:
aligned_sent = align_sequences(source_sent, target_sent)
if source_sent != target_sent:
cnt_tp += 1
alignments = [aligned_sent]
cnt_all += len(alignments)
try:
check_sent = convert_tagged_line(aligned_sent)
except Exception:
# debug mode
aligned_sent = align_sequences(source_sent, target_sent)
check_sent = convert_tagged_line(aligned_sent)
if "".join(check_sent.split()) != "".join(
target_sent.split()):
# do it again for debugging
aligned_sent = align_sequences(source_sent, target_sent)
check_sent = convert_tagged_line(aligned_sent)
print(f"Incorrect pair: \n{target_sent}\n{check_sent}")
continue
if alignments:
cnt_total += len(alignments)
tagged.extend(alignments)
if len(tagged) > chunk_size:
write_lines(output_file, tagged, mode='a')
tagged = []
print(f"Overall extracted {cnt_total}. "
f"Original TP {cnt_tp}."
f" Original TN {cnt_all - cnt_tp}")
if tagged:
write_lines(output_file, tagged, 'a')
def convert_labels_into_edits(labels):
all_edits = []
for i, label_list in enumerate(labels):
if label_list == ["$KEEP"]:
continue
else:
edit = [(i - 1, i), label_list]
all_edits.append(edit)
return all_edits
def get_target_sent_by_levels(source_tokens, labels):
relevant_edits = convert_labels_into_edits(labels)
target_tokens = source_tokens[:]
leveled_target_tokens = {}
if not relevant_edits:
target_sentence = " ".join(target_tokens)
return leveled_target_tokens, target_sentence
max_level = max([len(x[1]) for x in relevant_edits])
for level in range(max_level):
rest_edits = []
shift_idx = 0
for edits in relevant_edits:
(start, end), label_list = edits
label = label_list[0]
target_pos = start + shift_idx
source_token = target_tokens[target_pos] if target_pos >= 0 else START_TOKEN
if label == "$DELETE":
del target_tokens[target_pos]
shift_idx -= 1
elif label.startswith("$APPEND_"):
word = label.replace("$APPEND_", "")
target_tokens[target_pos + 1: target_pos + 1] = [word]
shift_idx += 1
elif label.startswith("$REPLACE_"):
word = label.replace("$REPLACE_", "")
target_tokens[target_pos] = word
elif label.startswith("$TRANSFORM"):
word = apply_reverse_transformation(source_token, label)
if word is None:
word = source_token
target_tokens[target_pos] = word
elif label.startswith("$MERGE_"):
# apply merge only on last stage
if level == (max_level - 1):
target_tokens[target_pos + 1: target_pos + 1] = [label]
shift_idx += 1
else:
rest_edit = [(start + shift_idx, end + shift_idx), [label]]
rest_edits.append(rest_edit)
rest_labels = label_list[1:]
if rest_labels:
rest_edit = [(start + shift_idx, end + shift_idx), rest_labels]
rest_edits.append(rest_edit)
leveled_tokens = target_tokens[:]
# update next step
relevant_edits = rest_edits[:]
if level == (max_level - 1):
leveled_tokens = replace_merge_transforms(leveled_tokens)
leveled_labels = convert_edits_into_labels(leveled_tokens,
relevant_edits)
leveled_target_tokens[level + 1] = {"tokens": leveled_tokens,
"labels": leveled_labels}
target_sentence = " ".join(leveled_target_tokens[max_level]["tokens"])
return leveled_target_tokens, target_sentence
def replace_merge_transforms(tokens):
if all(not x.startswith("$MERGE_") for x in tokens):
return tokens
target_tokens = tokens[:]
allowed_range = (1, len(tokens) - 1)
for i in range(len(tokens)):
target_token = tokens[i]
if target_token.startswith("$MERGE"):
if target_token.startswith("$MERGE_SWAP") and i in allowed_range:
target_tokens[i - 1] = tokens[i + 1]
target_tokens[i + 1] = tokens[i - 1]
target_tokens[i: i + 1] = []
target_line = " ".join(target_tokens)
target_line = target_line.replace(" $MERGE_HYPHEN ", "-")
target_line = target_line.replace(" $MERGE_SPACE ", "")
return target_line.split()
def convert_tagged_line(line, delimeters=SEQ_DELIMETERS):
label_del = delimeters['labels']
source_tokens = [x.split(label_del)[0]
for x in line.split(delimeters['tokens'])][1:]
labels = [x.split(label_del)[1].split(delimeters['operations'])
for x in line.split(delimeters['tokens'])]
assert len(source_tokens) + 1 == len(labels)
levels_dict, target_line = get_target_sent_by_levels(source_tokens, labels)
return target_line
def main(args):
convert_data_from_raw_files(args.source, args.target, args.output_file, args.chunk_size)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-s', '--source',
help='Path to the source file',
required=True)
parser.add_argument('-t', '--target',
help='Path to the target file',
required=True)
parser.add_argument('-o', '--output_file',
help='Path to the output file',
required=True)
parser.add_argument('--chunk_size',
type=int,
help='Dump each chunk size.',
default=1000000)
args = parser.parse_args()
main(args)
|