File size: 41,703 Bytes
847e3e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
"""Tweaked version of corresponding AllenNLP file"""
import datetime
import logging
import math
import os
import time
import traceback
from typing import Dict, Optional, List, Tuple, Union, Iterable, Any

import torch
import torch.optim.lr_scheduler
from allennlp.common import Params
from allennlp.common.checks import ConfigurationError, parse_cuda_device
from allennlp.common.tqdm import Tqdm
from allennlp.common.util import dump_metrics, gpu_memory_mb, peak_memory_mb, lazy_groups_of
from allennlp.data.instance import Instance
from allennlp.data.iterators.data_iterator import DataIterator, TensorDict
from allennlp.models.model import Model
from allennlp.nn import util as nn_util
from allennlp.training import util as training_util
from allennlp.training.checkpointer import Checkpointer
from allennlp.training.learning_rate_schedulers import LearningRateScheduler
from allennlp.training.metric_tracker import MetricTracker
from allennlp.training.momentum_schedulers import MomentumScheduler
from allennlp.training.moving_average import MovingAverage
from allennlp.training.optimizers import Optimizer
from allennlp.training.tensorboard_writer import TensorboardWriter
from allennlp.training.trainer_base import TrainerBase

logger = logging.getLogger(__name__)


class Trainer(TrainerBase):
    def __init__(
        self,
        model: Model,
        optimizer: torch.optim.Optimizer,
        scheduler: torch.optim.lr_scheduler,
        iterator: DataIterator,
        train_dataset: Iterable[Instance],
        validation_dataset: Optional[Iterable[Instance]] = None,
        patience: Optional[int] = None,
        validation_metric: str = "-loss",
        validation_iterator: DataIterator = None,
        shuffle: bool = True,
        num_epochs: int = 20,
        accumulated_batch_count: int = 1,
        serialization_dir: Optional[str] = None,
        num_serialized_models_to_keep: int = 20,
        keep_serialized_model_every_num_seconds: int = None,
        checkpointer: Checkpointer = None,
        model_save_interval: float = None,
        cuda_device: Union[int, List] = -1,
        grad_norm: Optional[float] = None,
        grad_clipping: Optional[float] = None,
        learning_rate_scheduler: Optional[LearningRateScheduler] = None,
        momentum_scheduler: Optional[MomentumScheduler] = None,
        summary_interval: int = 100,
        histogram_interval: int = None,
        should_log_parameter_statistics: bool = True,
        should_log_learning_rate: bool = False,
        log_batch_size_period: Optional[int] = None,
        moving_average: Optional[MovingAverage] = None,
        cold_step_count: int = 0,
        cold_lr: float = 1e-3,
        cuda_verbose_step=None,
    ) -> None:
        """
        A trainer for doing supervised learning. It just takes a labeled dataset
        and a ``DataIterator``, and uses the supplied ``Optimizer`` to learn the weights
        for your model over some fixed number of epochs. You can also pass in a validation
        dataset and enable early stopping. There are many other bells and whistles as well.

        Parameters
        ----------
        model : ``Model``, required.
            An AllenNLP model to be optimized. Pytorch Modules can also be optimized if
            their ``forward`` method returns a dictionary with a "loss" key, containing a
            scalar tensor representing the loss function to be optimized.

            If you are training your model using GPUs, your model should already be
            on the correct device. (If you use `Trainer.from_params` this will be
            handled for you.)
        optimizer : ``torch.nn.Optimizer``, required.
            An instance of a Pytorch Optimizer, instantiated with the parameters of the
            model to be optimized.
        iterator : ``DataIterator``, required.
            A method for iterating over a ``Dataset``, yielding padded indexed batches.
        train_dataset : ``Dataset``, required.
            A ``Dataset`` to train on. The dataset should have already been indexed.
        validation_dataset : ``Dataset``, optional, (default = None).
            A ``Dataset`` to evaluate on. The dataset should have already been indexed.
        patience : Optional[int] > 0, optional (default=None)
            Number of epochs to be patient before early stopping: the training is stopped
            after ``patience`` epochs with no improvement. If given, it must be ``> 0``.
            If None, early stopping is disabled.
        validation_metric : str, optional (default="loss")
            Validation metric to measure for whether to stop training using patience
            and whether to serialize an ``is_best`` model each epoch. The metric name
            must be prepended with either "+" or "-", which specifies whether the metric
            is an increasing or decreasing function.
        validation_iterator : ``DataIterator``, optional (default=None)
            An iterator to use for the validation set.  If ``None``, then
            use the training `iterator`.
        shuffle: ``bool``, optional (default=True)
            Whether to shuffle the instances in the iterator or not.
        num_epochs : int, optional (default = 20)
            Number of training epochs.
        serialization_dir : str, optional (default=None)
            Path to directory for saving and loading model files. Models will not be saved if
            this parameter is not passed.
        num_serialized_models_to_keep : ``int``, optional (default=20)
            Number of previous model checkpoints to retain.  Default is to keep 20 checkpoints.
            A value of None or -1 means all checkpoints will be kept.
        keep_serialized_model_every_num_seconds : ``int``, optional (default=None)
            If num_serialized_models_to_keep is not None, then occasionally it's useful to
            save models at a given interval in addition to the last num_serialized_models_to_keep.
            To do so, specify keep_serialized_model_every_num_seconds as the number of seconds
            between permanently saved checkpoints.  Note that this option is only used if
            num_serialized_models_to_keep is not None, otherwise all checkpoints are kept.
        checkpointer : ``Checkpointer``, optional (default=None)
            An instance of class Checkpointer to use instead of the default. If a checkpointer is specified,
            the arguments num_serialized_models_to_keep and keep_serialized_model_every_num_seconds should
            not be specified. The caller is responsible for initializing the checkpointer so that it is
            consistent with serialization_dir.
        model_save_interval : ``float``, optional (default=None)
            If provided, then serialize models every ``model_save_interval``
            seconds within single epochs.  In all cases, models are also saved
            at the end of every epoch if ``serialization_dir`` is provided.
        cuda_device : ``Union[int, List[int]]``, optional (default = -1)
            An integer or list of integers specifying the CUDA device(s) to use. If -1, the CPU is used.
        grad_norm : ``float``, optional, (default = None).
            If provided, gradient norms will be rescaled to have a maximum of this value.
        grad_clipping : ``float``, optional (default = ``None``).
            If provided, gradients will be clipped `during the backward pass` to have an (absolute)
            maximum of this value.  If you are getting ``NaNs`` in your gradients during training
            that are not solved by using ``grad_norm``, you may need this.
        learning_rate_scheduler : ``LearningRateScheduler``, optional (default = None)
            If specified, the learning rate will be decayed with respect to
            this schedule at the end of each epoch (or batch, if the scheduler implements
            the ``step_batch`` method). If you use :class:`torch.optim.lr_scheduler.ReduceLROnPlateau`,
            this will use the ``validation_metric`` provided to determine if learning has plateaued.
            To support updating the learning rate on every batch, this can optionally implement
            ``step_batch(batch_num_total)`` which updates the learning rate given the batch number.
        momentum_scheduler : ``MomentumScheduler``, optional (default = None)
            If specified, the momentum will be updated at the end of each batch or epoch
            according to the schedule.
        summary_interval: ``int``, optional, (default = 100)
            Number of batches between logging scalars to tensorboard
        histogram_interval : ``int``, optional, (default = ``None``)
            If not None, then log histograms to tensorboard every ``histogram_interval`` batches.
            When this parameter is specified, the following additional logging is enabled:
                * Histograms of model parameters
                * The ratio of parameter update norm to parameter norm
                * Histogram of layer activations
            We log histograms of the parameters returned by
            ``model.get_parameters_for_histogram_tensorboard_logging``.
            The layer activations are logged for any modules in the ``Model`` that have
            the attribute ``should_log_activations`` set to ``True``.  Logging
            histograms requires a number of GPU-CPU copies during training and is typically
            slow, so we recommend logging histograms relatively infrequently.
            Note: only Modules that return tensors, tuples of tensors or dicts
            with tensors as values currently support activation logging.
        should_log_parameter_statistics : ``bool``, optional, (default = True)
            Whether to send parameter statistics (mean and standard deviation
            of parameters and gradients) to tensorboard.
        should_log_learning_rate : ``bool``, optional, (default = False)
            Whether to send parameter specific learning rate to tensorboard.
        log_batch_size_period : ``int``, optional, (default = ``None``)
            If defined, how often to log the average batch size.
        moving_average: ``MovingAverage``, optional, (default = None)
            If provided, we will maintain moving averages for all parameters. During training, we
            employ a shadow variable for each parameter, which maintains the moving average. During
            evaluation, we backup the original parameters and assign the moving averages to corresponding
            parameters. Be careful that when saving the checkpoint, we will save the moving averages of
            parameters. This is necessary because we want the saved model to perform as well as the validated
            model if we load it later. But this may cause problems if you restart the training from checkpoint.
        """
        super().__init__(serialization_dir, cuda_device)

        # I am not calling move_to_gpu here, because if the model is
        # not already on the GPU then the optimizer is going to be wrong.
        self.model = model

        self.iterator = iterator
        self._validation_iterator = validation_iterator
        self.shuffle = shuffle
        self.optimizer = optimizer
        self.scheduler = scheduler
        self.train_data = train_dataset
        self._validation_data = validation_dataset
        self.accumulated_batch_count = accumulated_batch_count
        self.cold_step_count = cold_step_count
        self.cold_lr = cold_lr
        self.cuda_verbose_step = cuda_verbose_step

        if patience is None:  # no early stopping
            if validation_dataset:
                logger.warning(
                    "You provided a validation dataset but patience was set to None, "
                    "meaning that early stopping is disabled"
                )
        elif (not isinstance(patience, int)) or patience <= 0:
            raise ConfigurationError(
                '{} is an invalid value for "patience": it must be a positive integer '
                "or None (if you want to disable early stopping)".format(patience)
            )

        # For tracking is_best_so_far and should_stop_early
        self._metric_tracker = MetricTracker(patience, validation_metric)
        # Get rid of + or -
        self._validation_metric = validation_metric[1:]

        self._num_epochs = num_epochs

        if checkpointer is not None:
            # We can't easily check if these parameters were passed in, so check against their default values.
            # We don't check against serialization_dir since it is also used by the parent class.
            if num_serialized_models_to_keep != 20 \
                    or keep_serialized_model_every_num_seconds is not None:
                raise ConfigurationError(
                    "When passing a custom Checkpointer, you may not also pass in separate checkpointer "
                    "args 'num_serialized_models_to_keep' or 'keep_serialized_model_every_num_seconds'."
                )
            self._checkpointer = checkpointer
        else:
            self._checkpointer = Checkpointer(
                serialization_dir,
                keep_serialized_model_every_num_seconds,
                num_serialized_models_to_keep,
            )

        self._model_save_interval = model_save_interval

        self._grad_norm = grad_norm
        self._grad_clipping = grad_clipping

        self._learning_rate_scheduler = learning_rate_scheduler
        self._momentum_scheduler = momentum_scheduler
        self._moving_average = moving_average

        # We keep the total batch number as an instance variable because it
        # is used inside a closure for the hook which logs activations in
        # ``_enable_activation_logging``.
        self._batch_num_total = 0

        self._tensorboard = TensorboardWriter(
            get_batch_num_total=lambda: self._batch_num_total,
            serialization_dir=serialization_dir,
            summary_interval=summary_interval,
            histogram_interval=histogram_interval,
            should_log_parameter_statistics=should_log_parameter_statistics,
            should_log_learning_rate=should_log_learning_rate,
        )

        self._log_batch_size_period = log_batch_size_period

        self._last_log = 0.0  # time of last logging

        # Enable activation logging.
        if histogram_interval is not None:
            self._tensorboard.enable_activation_logging(self.model)

    def rescale_gradients(self) -> Optional[float]:
        return training_util.rescale_gradients(self.model, self._grad_norm)

    def batch_loss(self, batch_group: List[TensorDict], for_training: bool) -> torch.Tensor:
        """
        Does a forward pass on the given batches and returns the ``loss`` value in the result.
        If ``for_training`` is `True` also applies regularization penalty.
        """
        if self._multiple_gpu:
            output_dict = training_util.data_parallel(batch_group, self.model, self._cuda_devices)
        else:
            assert len(batch_group) == 1
            batch = batch_group[0]
            batch = nn_util.move_to_device(batch, self._cuda_devices[0])
            output_dict = self.model(**batch)

        try:
            loss = output_dict["loss"]
            if for_training:
                loss += self.model.get_regularization_penalty()
        except KeyError:
            if for_training:
                raise RuntimeError(
                    "The model you are trying to optimize does not contain a"
                    " 'loss' key in the output of model.forward(inputs)."
                )
            loss = None

        return loss

    def _train_epoch(self, epoch: int) -> Dict[str, float]:
        """
        Trains one epoch and returns metrics.
        """
        logger.info("Epoch %d/%d", epoch, self._num_epochs - 1)
        peak_cpu_usage = peak_memory_mb()
        logger.info(f"Peak CPU memory usage MB: {peak_cpu_usage}")
        gpu_usage = []
        for gpu, memory in gpu_memory_mb().items():
            gpu_usage.append((gpu, memory))
            logger.info(f"GPU {gpu} memory usage MB: {memory}")

        train_loss = 0.0
        # Set the model to "train" mode.
        self.model.train()

        num_gpus = len(self._cuda_devices)

        # Get tqdm for the training batches
        raw_train_generator = self.iterator(self.train_data, num_epochs=1, shuffle=self.shuffle)
        train_generator = lazy_groups_of(raw_train_generator, num_gpus)
        num_training_batches = math.ceil(self.iterator.get_num_batches(self.train_data) / num_gpus)
        residue = num_training_batches % self.accumulated_batch_count
        self._last_log = time.time()
        last_save_time = time.time()

        batches_this_epoch = 0
        if self._batch_num_total is None:
            self._batch_num_total = 0

        histogram_parameters = set(self.model.get_parameters_for_histogram_tensorboard_logging())

        logger.info("Training")
        train_generator_tqdm = Tqdm.tqdm(train_generator, total=num_training_batches)
        cumulative_batch_size = 0
        self.optimizer.zero_grad()
        for batch_group in train_generator_tqdm:
            batches_this_epoch += 1
            self._batch_num_total += 1
            batch_num_total = self._batch_num_total

            iter_len = self.accumulated_batch_count \
                if batches_this_epoch <= (num_training_batches - residue) else residue

            if self.cuda_verbose_step is not None and batch_num_total % self.cuda_verbose_step == 0:
                print(f'Before forward pass - Cuda memory allocated: {torch.cuda.memory_allocated() / 1e9}')
                print(f'Before forward pass - Cuda memory cached: {torch.cuda.memory_cached() / 1e9}')
            try:
                loss = self.batch_loss(batch_group, for_training=True) / iter_len
            except RuntimeError as e:
                print(e)
                for x in batch_group:
                    all_words = [len(y['words']) for y in x['metadata']]
                    print(f"Total sents: {len(all_words)}. "
                          f"Min {min(all_words)}. Max {max(all_words)}")
                    for elem in ['labels', 'd_tags']:
                        tt = x[elem]
                        print(
                            f"{elem} shape {list(tt.shape)} and min {tt.min().item()} and {tt.max().item()}")
                    for elem in ["bert", "mask", "bert-offsets"]:
                        tt = x['tokens'][elem]
                        print(
                            f"{elem} shape {list(tt.shape)} and min {tt.min().item()} and {tt.max().item()}")
                raise e

            if self.cuda_verbose_step is not None and batch_num_total % self.cuda_verbose_step == 0:
                print(f'After forward pass - Cuda memory allocated: {torch.cuda.memory_allocated() / 1e9}')
                print(f'After forward pass - Cuda memory cached: {torch.cuda.memory_cached() / 1e9}')

            if torch.isnan(loss):
                raise ValueError("nan loss encountered")

            loss.backward()

            if self.cuda_verbose_step is not None and batch_num_total % self.cuda_verbose_step == 0:
                print(f'After backprop - Cuda memory allocated: {torch.cuda.memory_allocated() / 1e9}')
                print(f'After backprop - Cuda memory cached: {torch.cuda.memory_cached() / 1e9}')

            train_loss += loss.item() * iter_len

            del batch_group, loss
            torch.cuda.empty_cache()

            if self.cuda_verbose_step is not None and batch_num_total % self.cuda_verbose_step == 0:
                print(f'After collecting garbage - Cuda memory allocated: {torch.cuda.memory_allocated() / 1e9}')
                print(f'After collecting garbage - Cuda memory cached: {torch.cuda.memory_cached() / 1e9}')

            batch_grad_norm = self.rescale_gradients()

            # This does nothing if batch_num_total is None or you are using a
            # scheduler which doesn't update per batch.
            if self._learning_rate_scheduler:
                self._learning_rate_scheduler.step_batch(batch_num_total)
            if self._momentum_scheduler:
                self._momentum_scheduler.step_batch(batch_num_total)

            if self._tensorboard.should_log_histograms_this_batch():
                # get the magnitude of parameter updates for logging
                # We need a copy of current parameters to compute magnitude of updates,
                # and copy them to CPU so large models won't go OOM on the GPU.
                param_updates = {
                    name: param.detach().cpu().clone()
                    for name, param in self.model.named_parameters()
                }
                if batches_this_epoch % self.accumulated_batch_count == 0 or \
                        batches_this_epoch == num_training_batches:
                    self.optimizer.step()
                    self.optimizer.zero_grad()
                for name, param in self.model.named_parameters():
                    param_updates[name].sub_(param.detach().cpu())
                    update_norm = torch.norm(param_updates[name].view(-1))
                    param_norm = torch.norm(param.view(-1)).cpu()
                    self._tensorboard.add_train_scalar(
                        "gradient_update/" + name, update_norm / (param_norm + 1e-7)
                    )
            else:
                if batches_this_epoch % self.accumulated_batch_count == 0 or \
                        batches_this_epoch == num_training_batches:
                    self.optimizer.step()
                    self.optimizer.zero_grad()

            # Update moving averages
            if self._moving_average is not None:
                self._moving_average.apply(batch_num_total)

            # Update the description with the latest metrics
            metrics = training_util.get_metrics(self.model, train_loss, batches_this_epoch)
            description = training_util.description_from_metrics(metrics)

            train_generator_tqdm.set_description(description, refresh=False)

            # Log parameter values to Tensorboard
            if self._tensorboard.should_log_this_batch():
                self._tensorboard.log_parameter_and_gradient_statistics(self.model, batch_grad_norm)
                self._tensorboard.log_learning_rates(self.model, self.optimizer)

                self._tensorboard.add_train_scalar("loss/loss_train", metrics["loss"])
                self._tensorboard.log_metrics({"epoch_metrics/" + k: v for k, v in metrics.items()})

            if self._tensorboard.should_log_histograms_this_batch():
                self._tensorboard.log_histograms(self.model, histogram_parameters)

            if self._log_batch_size_period:
                cur_batch = sum([training_util.get_batch_size(batch) for batch in batch_group])
                cumulative_batch_size += cur_batch
                if (batches_this_epoch - 1) % self._log_batch_size_period == 0:
                    average = cumulative_batch_size / batches_this_epoch
                    logger.info(f"current batch size: {cur_batch} mean batch size: {average}")
                    self._tensorboard.add_train_scalar("current_batch_size", cur_batch)
                    self._tensorboard.add_train_scalar("mean_batch_size", average)

            # Save model if needed.
            if self._model_save_interval is not None and (
                time.time() - last_save_time > self._model_save_interval
            ):
                last_save_time = time.time()
                self._save_checkpoint(
                    "{0}.{1}".format(epoch, training_util.time_to_str(int(last_save_time)))
                )

        metrics = training_util.get_metrics(self.model, train_loss, batches_this_epoch, reset=True)
        metrics["cpu_memory_MB"] = peak_cpu_usage
        for (gpu_num, memory) in gpu_usage:
            metrics["gpu_" + str(gpu_num) + "_memory_MB"] = memory
        return metrics

    def _validation_loss(self) -> Tuple[float, int]:
        """
        Computes the validation loss. Returns it and the number of batches.
        """
        logger.info("Validating")

        self.model.eval()

        # Replace parameter values with the shadow values from the moving averages.
        if self._moving_average is not None:
            self._moving_average.assign_average_value()

        if self._validation_iterator is not None:
            val_iterator = self._validation_iterator
        else:
            val_iterator = self.iterator

        num_gpus = len(self._cuda_devices)

        raw_val_generator = val_iterator(self._validation_data, num_epochs=1, shuffle=False)
        val_generator = lazy_groups_of(raw_val_generator, num_gpus)
        num_validation_batches = math.ceil(
            val_iterator.get_num_batches(self._validation_data) / num_gpus
        )
        val_generator_tqdm = Tqdm.tqdm(val_generator, total=num_validation_batches)
        batches_this_epoch = 0
        val_loss = 0
        for batch_group in val_generator_tqdm:

            loss = self.batch_loss(batch_group, for_training=False)
            if loss is not None:
                # You shouldn't necessarily have to compute a loss for validation, so we allow for
                # `loss` to be None.  We need to be careful, though - `batches_this_epoch` is
                # currently only used as the divisor for the loss function, so we can safely only
                # count those batches for which we actually have a loss.  If this variable ever
                # gets used for something else, we might need to change things around a bit.
                batches_this_epoch += 1
                val_loss += loss.detach().cpu().numpy()

            # Update the description with the latest metrics
            val_metrics = training_util.get_metrics(self.model, val_loss, batches_this_epoch)
            description = training_util.description_from_metrics(val_metrics)
            val_generator_tqdm.set_description(description, refresh=False)

        # Now restore the original parameter values.
        if self._moving_average is not None:
            self._moving_average.restore()

        return val_loss, batches_this_epoch

    def train(self) -> Dict[str, Any]:
        """
        Trains the supplied model with the supplied parameters.
        """
        try:
            epoch_counter = self._restore_checkpoint()
        except RuntimeError:
            traceback.print_exc()
            raise ConfigurationError(
                "Could not recover training from the checkpoint.  Did you mean to output to "
                "a different serialization directory or delete the existing serialization "
                "directory?"
            )

        training_util.enable_gradient_clipping(self.model, self._grad_clipping)

        logger.info("Beginning training.")

        train_metrics: Dict[str, float] = {}
        val_metrics: Dict[str, float] = {}
        this_epoch_val_metric: float = None
        metrics: Dict[str, Any] = {}
        epochs_trained = 0
        training_start_time = time.time()

        if self.cold_step_count > 0:
            base_lr = self.optimizer.param_groups[0]['lr']
            for param_group in self.optimizer.param_groups:
                param_group['lr'] = self.cold_lr
            self.model.text_field_embedder._token_embedders['bert'].set_weights(freeze=True)

        metrics["best_epoch"] = self._metric_tracker.best_epoch
        for key, value in self._metric_tracker.best_epoch_metrics.items():
            metrics["best_validation_" + key] = value

        for epoch in range(epoch_counter, self._num_epochs):
            if epoch == self.cold_step_count and epoch != 0:
                for param_group in self.optimizer.param_groups:
                    param_group['lr'] = base_lr
                self.model.text_field_embedder._token_embedders['bert'].set_weights(freeze=False)

            epoch_start_time = time.time()
            train_metrics = self._train_epoch(epoch)

            # get peak of memory usage
            if "cpu_memory_MB" in train_metrics:
                metrics["peak_cpu_memory_MB"] = max(
                    metrics.get("peak_cpu_memory_MB", 0), train_metrics["cpu_memory_MB"]
                )
            for key, value in train_metrics.items():
                if key.startswith("gpu_"):
                    metrics["peak_" + key] = max(metrics.get("peak_" + key, 0), value)

            # clear cache before validation
            torch.cuda.empty_cache()
            if self._validation_data is not None:
                with torch.no_grad():
                    # We have a validation set, so compute all the metrics on it.
                    val_loss, num_batches = self._validation_loss()
                    val_metrics = training_util.get_metrics(
                        self.model, val_loss, num_batches, reset=True
                    )

                    # Check validation metric for early stopping
                    this_epoch_val_metric = val_metrics[self._validation_metric]
                    self._metric_tracker.add_metric(this_epoch_val_metric)

                    if self._metric_tracker.should_stop_early():
                        logger.info("Ran out of patience.  Stopping training.")
                        break

            self._tensorboard.log_metrics(
                train_metrics, val_metrics=val_metrics, log_to_console=True, epoch=epoch + 1
            )  # +1 because tensorboard doesn't like 0

            # Create overall metrics dict
            training_elapsed_time = time.time() - training_start_time
            metrics["training_duration"] = str(datetime.timedelta(seconds=training_elapsed_time))
            metrics["training_start_epoch"] = epoch_counter
            metrics["training_epochs"] = epochs_trained
            metrics["epoch"] = epoch

            for key, value in train_metrics.items():
                metrics["training_" + key] = value
            for key, value in val_metrics.items():
                metrics["validation_" + key] = value

            # if self.cold_step_count <= epoch:
            self.scheduler.step(metrics['validation_loss'])

            if self._metric_tracker.is_best_so_far():
                # Update all the best_ metrics.
                # (Otherwise they just stay the same as they were.)
                metrics["best_epoch"] = epoch
                for key, value in val_metrics.items():
                    metrics["best_validation_" + key] = value

                self._metric_tracker.best_epoch_metrics = val_metrics

            if self._serialization_dir:
                dump_metrics(
                    os.path.join(self._serialization_dir, f"metrics_epoch_{epoch}.json"), metrics
                )

            # The Scheduler API is agnostic to whether your schedule requires a validation metric -
            # if it doesn't, the validation metric passed here is ignored.
            if self._learning_rate_scheduler:
                self._learning_rate_scheduler.step(this_epoch_val_metric, epoch)
            if self._momentum_scheduler:
                self._momentum_scheduler.step(this_epoch_val_metric, epoch)

            self._save_checkpoint(epoch)

            epoch_elapsed_time = time.time() - epoch_start_time
            logger.info("Epoch duration: %s", datetime.timedelta(seconds=epoch_elapsed_time))

            if epoch < self._num_epochs - 1:
                training_elapsed_time = time.time() - training_start_time
                estimated_time_remaining = training_elapsed_time * (
                    (self._num_epochs - epoch_counter) / float(epoch - epoch_counter + 1) - 1
                )
                formatted_time = str(datetime.timedelta(seconds=int(estimated_time_remaining)))
                logger.info("Estimated training time remaining: %s", formatted_time)

            epochs_trained += 1

        # make sure pending events are flushed to disk and files are closed properly
        # self._tensorboard.close()

        # Load the best model state before returning
        best_model_state = self._checkpointer.best_model_state()
        if best_model_state:
            self.model.load_state_dict(best_model_state)

        return metrics

    def _save_checkpoint(self, epoch: Union[int, str]) -> None:
        """
        Saves a checkpoint of the model to self._serialization_dir.
        Is a no-op if self._serialization_dir is None.

        Parameters
        ----------
        epoch : Union[int, str], required.
            The epoch of training.  If the checkpoint is saved in the middle
            of an epoch, the parameter is a string with the epoch and timestamp.
        """
        # If moving averages are used for parameters, we save
        # the moving average values into checkpoint, instead of the current values.
        if self._moving_average is not None:
            self._moving_average.assign_average_value()

        # These are the training states we need to persist.
        training_states = {
            "metric_tracker": self._metric_tracker.state_dict(),
            "optimizer": self.optimizer.state_dict(),
            "batch_num_total": self._batch_num_total,
        }

        # If we have a learning rate or momentum scheduler, we should persist them too.
        if self._learning_rate_scheduler is not None:
            training_states["learning_rate_scheduler"] = self._learning_rate_scheduler.state_dict()
        if self._momentum_scheduler is not None:
            training_states["momentum_scheduler"] = self._momentum_scheduler.state_dict()

        self._checkpointer.save_checkpoint(
            model_state=self.model.state_dict(),
            epoch=epoch,
            training_states=training_states,
            is_best_so_far=self._metric_tracker.is_best_so_far(),
        )

        # Restore the original values for parameters so that training will not be affected.
        if self._moving_average is not None:
            self._moving_average.restore()

    def _restore_checkpoint(self) -> int:
        """
        Restores the model and training state from the last saved checkpoint.
        This includes an epoch count and optimizer state, which is serialized separately
        from model parameters. This function should only be used to continue training -
        if you wish to load a model for inference/load parts of a model into a new
        computation graph, you should use the native Pytorch functions:
        `` model.load_state_dict(torch.load("/path/to/model/weights.th"))``

        If ``self._serialization_dir`` does not exist or does not contain any checkpointed weights,
        this function will do nothing and return 0.

        Returns
        -------
        epoch: int
            The epoch at which to resume training, which should be one after the epoch
            in the saved training state.
        """
        model_state, training_state = self._checkpointer.restore_checkpoint()

        if not training_state:
            # No checkpoint to restore, start at 0
            return 0

        self.model.load_state_dict(model_state)
        self.optimizer.load_state_dict(training_state["optimizer"])
        if self._learning_rate_scheduler is not None \
                and "learning_rate_scheduler" in training_state:
            self._learning_rate_scheduler.load_state_dict(training_state["learning_rate_scheduler"])
        if self._momentum_scheduler is not None and "momentum_scheduler" in training_state:
            self._momentum_scheduler.load_state_dict(training_state["momentum_scheduler"])
        training_util.move_optimizer_to_cuda(self.optimizer)

        # Currently the ``training_state`` contains a serialized ``MetricTracker``.
        if "metric_tracker" in training_state:
            self._metric_tracker.load_state_dict(training_state["metric_tracker"])
        # It used to be the case that we tracked ``val_metric_per_epoch``.
        elif "val_metric_per_epoch" in training_state:
            self._metric_tracker.clear()
            self._metric_tracker.add_metrics(training_state["val_metric_per_epoch"])
        # And before that we didn't track anything.
        else:
            self._metric_tracker.clear()

        if isinstance(training_state["epoch"], int):
            epoch_to_return = training_state["epoch"] + 1
        else:
            epoch_to_return = int(training_state["epoch"].split(".")[0]) + 1

        # For older checkpoints with batch_num_total missing, default to old behavior where
        # it is unchanged.
        batch_num_total = training_state.get("batch_num_total")
        if batch_num_total is not None:
            self._batch_num_total = batch_num_total

        return epoch_to_return

    # Requires custom from_params.
    @classmethod
    def from_params(  # type: ignore
        cls,
        model: Model,
        serialization_dir: str,
        iterator: DataIterator,
        train_data: Iterable[Instance],
        validation_data: Optional[Iterable[Instance]],
        params: Params,
        validation_iterator: DataIterator = None,
    ) -> "Trainer":

        patience = params.pop_int("patience", None)
        validation_metric = params.pop("validation_metric", "-loss")
        shuffle = params.pop_bool("shuffle", True)
        num_epochs = params.pop_int("num_epochs", 20)
        cuda_device = parse_cuda_device(params.pop("cuda_device", -1))
        grad_norm = params.pop_float("grad_norm", None)
        grad_clipping = params.pop_float("grad_clipping", None)
        lr_scheduler_params = params.pop("learning_rate_scheduler", None)
        momentum_scheduler_params = params.pop("momentum_scheduler", None)

        if isinstance(cuda_device, list):
            model_device = cuda_device[0]
        else:
            model_device = cuda_device
        if model_device >= 0:
            # Moving model to GPU here so that the optimizer state gets constructed on
            # the right device.
            model = model.cuda(model_device)

        parameters = [[n, p] for n, p in model.named_parameters() if p.requires_grad]
        optimizer = Optimizer.from_params(parameters, params.pop("optimizer"))
        if "moving_average" in params:
            moving_average = MovingAverage.from_params(
                params.pop("moving_average"), parameters=parameters
            )
        else:
            moving_average = None

        if lr_scheduler_params:
            lr_scheduler = LearningRateScheduler.from_params(optimizer, lr_scheduler_params)
        else:
            lr_scheduler = None
        if momentum_scheduler_params:
            momentum_scheduler = MomentumScheduler.from_params(optimizer, momentum_scheduler_params)
        else:
            momentum_scheduler = None

        if "checkpointer" in params:
            if "keep_serialized_model_every_num_seconds" in params \
                    or "num_serialized_models_to_keep" in params:
                raise ConfigurationError(
                    "Checkpointer may be initialized either from the 'checkpointer' key or from the "
                    "keys 'num_serialized_models_to_keep' and 'keep_serialized_model_every_num_seconds'"
                    " but the passed config uses both methods."
                )
            checkpointer = Checkpointer.from_params(params.pop("checkpointer"))
        else:
            num_serialized_models_to_keep = params.pop_int("num_serialized_models_to_keep", 20)
            keep_serialized_model_every_num_seconds = params.pop_int(
                "keep_serialized_model_every_num_seconds", None
            )
            checkpointer = Checkpointer(
                serialization_dir=serialization_dir,
                num_serialized_models_to_keep=num_serialized_models_to_keep,
                keep_serialized_model_every_num_seconds=keep_serialized_model_every_num_seconds,
            )
        model_save_interval = params.pop_float("model_save_interval", None)
        summary_interval = params.pop_int("summary_interval", 100)
        histogram_interval = params.pop_int("histogram_interval", None)
        should_log_parameter_statistics = params.pop_bool("should_log_parameter_statistics", True)
        should_log_learning_rate = params.pop_bool("should_log_learning_rate", False)
        log_batch_size_period = params.pop_int("log_batch_size_period", None)

        params.assert_empty(cls.__name__)
        return cls(
            model,
            optimizer,
            iterator,
            train_data,
            validation_data,
            patience=patience,
            validation_metric=validation_metric,
            validation_iterator=validation_iterator,
            shuffle=shuffle,
            num_epochs=num_epochs,
            serialization_dir=serialization_dir,
            cuda_device=cuda_device,
            grad_norm=grad_norm,
            grad_clipping=grad_clipping,
            learning_rate_scheduler=lr_scheduler,
            momentum_scheduler=momentum_scheduler,
            checkpointer=checkpointer,
            model_save_interval=model_save_interval,
            summary_interval=summary_interval,
            histogram_interval=histogram_interval,
            should_log_parameter_statistics=should_log_parameter_statistics,
            should_log_learning_rate=should_log_learning_rate,
            log_batch_size_period=log_batch_size_period,
            moving_average=moving_average,
        )