Spaces:
Runtime error
Runtime error
File size: 9,487 Bytes
393f86d 32ac110 ce8bd36 393f86d db8cc8e ce8bd36 db8cc8e 32ac110 db8cc8e 32ac110 9ca002e ce8bd36 32ac110 393f86d ce8bd36 393f86d ce8bd36 393f86d ce8bd36 393f86d ce8bd36 393f86d 795ccdc 393f86d ce8bd36 393f86d ce8bd36 393f86d ce8bd36 795ccdc f924cbe 32ac110 ce8bd36 248e2bb 795ccdc ce8bd36 393f86d ce8bd36 a23bf4a ce8bd36 248e2bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import streamlit as st
import pandas as pd
import os, csv
from huggingface_hub import hf_hub_download, HfApi
import math
HF_TOKEN = os.getenv('HUGGING_FACE_HUB_TOKEN')
CACHED_FILE_PATH = hf_hub_download(repo_id="sasha/co2_submissions", filename="co2_emissions.csv", repo_type="dataset")
api = HfApi()
def write_to_csv(hardware, training_time, provider, carbon_intensity, dynamic_emissions):
with open(CACHED_FILE_PATH,'a', newline='') as f:
writer = csv.writer(f)
writer.writerow([hardware, training_time, provider, carbon_intensity, dynamic_emissions])
api.upload_file(
path_or_fileobj=CACHED_FILE_PATH,
path_in_repo="co2_emissions.csv",
repo_id="sasha/co2_submissions",
repo_type="dataset",
)
st.set_page_config(
page_title="AI Carbon Calculator",
layout="wide",
)
tdp_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/gpus.csv"
compute_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/impact.csv"
electricity_url = "https://raw.githubusercontent.com/mlco2/impact/master/data/2021-10-27yearly_averages.csv"
server_sheet_id = "1DqYgQnEDLQVQm5acMAhLgHLD8xXCG9BIrk-_Nv6jF3k"
server_sheet_name = "Server%20Carbon%20Footprint"
server_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={server_sheet_name}"
embodied_gpu_sheet_name = "Scope%203%20Ratios"
embodied_gpu_url = f"https://docs.google.com/spreadsheets/d/{server_sheet_id}/gviz/tq?tqx=out:csv&sheet={embodied_gpu_sheet_name}"
TDP =pd.read_csv(tdp_url)
instances = pd.read_csv(compute_url)
providers = [p.upper() for p in instances['provider'].unique().tolist()]
providers.append('Local/Private Infastructure')
kg_per_mile = 0.348
electricity = pd.read_csv(electricity_url)
servers = pd.read_csv(server_url)
#print(servers.columns)
embodied_gpu = pd.read_csv(embodied_gpu_url)
#print(embodied_gpu.columns)
#st.image('images/MIT_carbon_image_narrow.png', use_column_width=True, caption = 'Image credit: ')
st.title("AI Carbon Calculator")
st.markdown('## Estimate your AI model\'s CO2 carbon footprint! ππ₯οΈπ')
st.markdown('##### The calculators below will help you calculate different aspects of your model\'s carbon footprint, as we did for'
' BLOOM πΈ, a 176-billion parameter language model [(see our preprint!)](https://arxiv.org/abs/2211.02001)')
st.markdown('##### Don\'t forget to share your data to help us get a better idea of AI model\'s carbon emissions!')
st.markdown('### Dynamic Emissions π')
st.markdown('##### These are the emissions produced by generating the electricity necessary for powering model training.')
with st.expander("Calculate the dynamic emissions of your model"):
col1, col2, col3, col4 = st.columns(4)
with col1:
hardware = st.selectbox('GPU used', TDP['name'].tolist())
gpu_tdp = TDP['tdp_watts'][TDP['name'] == hardware].tolist()[0]
st.markdown("Different GPUs have different TDP (Thermal Design Power), which impacts how much energy you use.")
with col2:
training_time = st.number_input('Total number of GPU hours')
st.markdown('This is calculated by multiplying the number of GPUs you used by the training time: '
'i.e. if you used 100 GPUs for 10 hours, this is equal to 100x10 = 1,000 GPU hours.')
with col3:
provider = st.selectbox('Provider used', providers)
st.markdown('If you can\'t find your provider here, select "Local/Private Infrastructure".')
with col4:
if provider != 'Local/Private Infastructure':
provider_instances = instances['region'][instances['provider'] == provider.lower()].unique().tolist()
region = st.selectbox('Provider used', provider_instances)
carbon_intensity = instances['impact'][(instances['provider'] == provider.lower()) & (instances['region'] == region)].tolist()[0]
else:
carbon_intensity = st.number_input('Carbon intensity of your energy grid, in grams of CO2 per kWh')
st.markdown('You can consult a resource like the [IEA](https://www.iea.org/countries) or '
' [Electricity Map](https://app.electricitymaps.com/) to get this information.')
dynamic_emissions = round(gpu_tdp * training_time * carbon_intensity/1000000)
st.metric(label="Dynamic emissions", value=str(dynamic_emissions)+' kilograms of CO2eq')
st.markdown('This is roughly equivalent to '+ str(round(dynamic_emissions/kg_per_mile,1)) + ' miles driven in an average US car'
' produced in 2021. [(Source: energy.gov)](https://www.energy.gov/eere/vehicles/articles/fotw-1223-january-31-2022-average-carbon-dioxide-emissions-2021-model-year)')
st.markdown('### Experimental Emissions π©βπ¬')
st.markdown('##### These are the emissions produced by generating the electricity necessary for powering the experiments and tests needed to pick your final model architecture '
'and parameters.')
with st.expander("Calculate the experimental emissions of your model"):
st.markdown('##### Consult your training logs to figure out how many ablations, baselines and experiments were run before converging on the final model.')
experimentation_time = st.number_input(label='Number of hours of experimentation run', value=training_time)
st.markdown('##### As a baseline, language models such as [OPT](https://arxiv.org/pdf/2205.01068.pdf) and [BLOOM](https://arxiv.org/abs/2211.02001)'
' found that experimentation roughly doubles the amount of compute used by training the model itself.')
experimental_emissions = round(gpu_tdp * (experimentation_time) * carbon_intensity/1000000)
st.metric(label="Experimental emissions", value=str(0.0)+' kilograms of CO2eq')
st.markdown('### Idle Emissions π')
st.markdown('##### These are the emissions produced by generating the electricity needed to power the rest of the infrastructure'
'used for model training -- the datacenter, network, heating/cooling, storage, etc.')
with st.expander("Calculate the idle emissions of your model"):
st.markdown('##### A proxy often used to reflect idle emissions is PUE (Power Usage Effectiveness), which represents '
' the ratio of energy used for computing overheads like cooling, which varies depending on the data center.')
pue = instances['PUE'][(instances['provider'] == provider.lower()) & (instances['region'] == region)].tolist()[0]
if math.isnan(pue) == True:
if provider != 'Local/Private Infastructure':
st.markdown('##### The exact information isn\'t available for this datacenter! We will use your provider\'s average instead, which is:')
if provider == 'AWS':
pue = 1.135
st.markdown('#### ' + str(pue)+ " [(source)](https://www.cloudcarbonfootprint.org/docs/methodology/)")
elif provider == 'GCP':
pue = 1.1
st.markdown('#### ' + str(pue) + " [(source)](https://www.google.ca/about/datacenters/efficiency/)")
elif provider == 'AZURE':
pue = 1.185
st.markdown('#### ' + str(pue) + " [(source)](https://www.cloudcarbonfootprint.org/docs/methodology/)")
elif provider == 'OVH':
pue = 1.28
st.markdown('#### ' + str(pue) + " [(source)](https://corporate.ovhcloud.com/en-ca/sustainability/environment/)")
elif provider == 'SCALEWAY':
pue = 1.35
st.markdown('#### ' +str(pue) + " [(source)](https://pue.dc3.scaleway.com/en/)")
else:
st.markdown('##### Try to find the PUE of your local infrastructure. Otherwise, you can use the industry average, 1.58:')
pue = st.number_input('Total number of GPU hours', value = 1.58)
else:
st.markdown('##### The PUE of the datacenter you used is: ')
st.markdown('#### '+ str(pue))
pue_emissions = round((experimental_emissions+ dynamic_emissions)*pue)
st.metric(label="Emissions considering PUE", value=str(pue_emissions)+' kilograms of CO2eq')
st.markdown('### Embodied Emissions π₯οΈπ¨')
st.markdown('##### These are the emissions associated with the materials and processes involved in producing'
' the computing equipment needed for AI models.')
with st.expander("Calculate the embodied emissions of your model"):
st.markdown('##### These are the trickiest emissions to track down since a lot of the information needed is missing!')
m = st.markdown("""
<style>
div.stButton > button:first-child {
background-color: rgb(80, 200, 120);
background-image: none;
font-size: 20px;
height: 3em;
}
</style>""", unsafe_allow_html=True)
buttoncol1, cuttoncol2, buttoncol3 = st.columns(3)
with cuttoncol2:
st.button(label="Anonymously share my data!", on_click = lambda *args: write_to_csv(hardware, training_time, provider, carbon_intensity, dynamic_emissions))
st.markdown('### Methodology')
with st.expander("More information about our Methodology"):
st.markdown('Building on the work of the [ML CO2 Calculator](https://mlco2.github.io/impact/), this tool allows you to consider'
' other aspects of your model\'s carbon footprint based on the LCA methodology.')
st.image('images/LCA_CO2.png', caption='The LCA methodology - the parts in green are those we focus on.')
|