File size: 22,531 Bytes
e0f71e1
e3db752
e0f71e1
 
e3db752
e0f71e1
 
 
60ee11d
0f04201
e3db752
 
60ee11d
e3db752
60ee11d
e3db752
 
 
e0f71e1
e3db752
 
 
e0f71e1
e3db752
 
 
 
e0f71e1
 
e3db752
 
e0f71e1
e3db752
fea02f6
e3db752
e0f71e1
e3db752
 
 
e0f71e1
e3db752
 
cdb2b77
e3db752
 
 
 
e0f71e1
 
 
 
 
e3db752
 
 
 
 
 
 
 
 
 
e0f71e1
 
 
60ee11d
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f04201
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
0950a4c
e0f71e1
 
 
0f04201
 
fea02f6
0f04201
 
 
 
fea02f6
 
0f04201
60ee11d
e0f71e1
 
0f04201
ba16989
0f04201
 
 
 
78e760c
0f04201
 
 
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60ee11d
 
 
e0f71e1
fea02f6
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b3d61a3
e0f71e1
 
 
 
 
 
fea02f6
0f04201
78e760c
 
0f04201
fea02f6
 
 
 
0f04201
 
fea02f6
 
b3d61a3
60ee11d
cdb2b77
 
 
 
 
 
0950a4c
 
 
 
b3d61a3
0950a4c
e0f71e1
 
60ee11d
e0f71e1
 
 
 
 
 
fea02f6
 
 
e0f71e1
 
fea02f6
e0f71e1
fea02f6
 
 
0f04201
 
 
e3db752
 
 
 
 
0950a4c
e3db752
 
 
e0f71e1
 
 
0950a4c
60ee11d
ba16989
e0f71e1
e3db752
e0f71e1
0950a4c
e0f71e1
 
e3db752
60ee11d
0950a4c
60ee11d
e3db752
 
e0f71e1
60ee11d
e3db752
60ee11d
e0f71e1
e3db752
 
 
e0f71e1
e3db752
 
bd669ec
 
 
cdb2b77
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962f893
 
e0f71e1
cdb2b77
 
e0f71e1
 
 
962f893
 
e3db752
 
 
 
962f893
fea02f6
 
 
 
 
 
 
e3db752
fea02f6
 
 
 
 
 
 
 
 
e3db752
fea02f6
 
 
 
 
 
 
e3db752
fea02f6
 
 
0f04201
 
78e760c
 
 
0f04201
e3db752
 
 
 
 
 
 
 
 
 
 
0f04201
 
78e760c
e3db752
 
 
 
 
 
 
 
 
 
 
 
 
0950a4c
e3db752
 
 
 
e0f71e1
 
 
 
 
 
 
 
78e760c
e0f71e1
 
 
 
 
 
 
 
78e760c
 
0f04201
78e760c
e3db752
 
e0f71e1
 
e3db752
0950a4c
e3db752
e0f71e1
 
 
cdb2b77
0950a4c
cdb2b77
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
78e760c
 
 
 
 
e0f71e1
0f04201
e0f71e1
 
 
 
0f04201
e0f71e1
 
 
fea02f6
0f04201
fea02f6
 
 
 
e0f71e1
 
0f04201
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
962f893
 
 
 
 
 
 
 
 
 
 
 
e3db752
 
 
 
fea02f6
 
78e760c
fea02f6
78e760c
fea02f6
 
e3db752
 
 
 
 
 
fea02f6
 
 
78e760c
fea02f6
 
0f04201
 
 
78e760c
0f04201
 
60ee11d
 
e0f71e1
 
 
 
 
 
 
 
 
 
 
60ee11d
e0f71e1
 
 
 
60ee11d
e0f71e1
fea02f6
 
 
e0f71e1
 
 
 
 
 
 
 
e3db752
e0f71e1
962f893
 
fea02f6
e3db752
962f893
e0f71e1
 
 
bd669ec
e3db752
 
e0f71e1
 
 
 
fea02f6
 
e3db752
 
 
 
 
 
 
 
 
962f893
 
fea02f6
 
 
e0f71e1
60ee11d
 
 
 
fea02f6
 
 
 
e3db752
 
 
fea02f6
 
 
0f04201
 
 
e3db752
78e760c
e0f71e1
 
 
 
 
 
 
78e760c
e0f71e1
 
 
 
 
 
 
0950a4c
e0f71e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import time

import gradio as gr
import numpy as np
import ollama
import torch
import torchaudio
import typer
from langchain.memory import ChatMessageHistory
from langchain.tools import tool
from langchain.tools.base import StructuredTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from loguru import logger
from transformers import pipeline

from kitt.core import tts_gradio
from kitt.core import utils as kitt_utils
from kitt.core import voice_options

# from kitt.core.model import process_query
from kitt.core.model import generate_function_call as process_query
from kitt.core.tts import run_melo_tts, run_tts_fast, run_tts_replicate
from kitt.skills import (
    code_interpreter,
    date_time_info,
    do_anything_else,
    extract_func_args,
    find_route,
    get_forecast,
    get_weather,
    get_weather_current_location,
    search_along_route_w_coordinates,
    search_points_of_interest,
    set_vehicle_destination,
    set_vehicle_speed,
)
from kitt.skills import vehicle_status as vehicle_status_fn
from kitt.skills.common import config, vehicle
from kitt.skills.routing import calculate_route, find_address

ORIGIN = "Mondorf-les-Bains, Luxembourg"
DESTINATION = "Rue Alphonse Weicker, Luxembourg"
DEFAULT_LLM_BACKEND = "replicate"
ENABLE_HISTORY = True
ENABLE_TTS = True
TTS_BACKEND = "local"
USER_PREFERENCES = "User loves italian food."

global_context = {
    "vehicle": vehicle,
    "query": "How is the weather?",
    "route_points": [],
    "origin": ORIGIN,
    "destination": DESTINATION,
    "enable_history": ENABLE_HISTORY,
    "tts_enabled": ENABLE_TTS,
    "tts_backend": TTS_BACKEND,
    "llm_backend": DEFAULT_LLM_BACKEND,
    "map_origin": ORIGIN,
    "map_destination": DESTINATION,
    "update_proxy": 0,
    "map": None,
}

speaker_embedding_cache = {}
history = ChatMessageHistory()

MODEL_FUNC = "nexusraven"
MODEL_GENERAL = "llama3:instruct"

RAVEN_PROMPT_FUNC = """You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on."

{raven_tools}

{history}

User Query: Question: {input}<human_end>
"""


HERMES_PROMPT_FUNC = """
<|im_start|>system
You are a helpful AI assistant in a car (vehicle), that follows instructions extremely well. \
Answer questions concisely and do not mention what you base your reply on.<|im_end|>
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"""


def get_prompt(template, input, history, tools):
    # "vehicle_status": vehicle_status_fn()[0]
    kwargs = {"history": history, "input": input}
    prompt = "<human>:\n"
    for tool in tools:
        func_signature, func_docstring = tool.description.split(" - ", 1)
        prompt += f'Function:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
    kwargs["raven_tools"] = prompt

    if history:
        kwargs["history"] = f"Previous conversation history:{history}\n"

    return template.format(**kwargs).replace("{{", "{").replace("}}", "}")


def use_tool(func_name, kwargs, tools):
    for tool in tools:
        if tool.name == func_name:
            return tool.invoke(input=kwargs)
    return None


# llm = Ollama(model="nexusraven", stop=["\nReflection:", "\nThought:"], keep_alive=60*10)


# Generate options for hours (00-23)
hour_options = [f"{i:02d}:00:00" for i in range(24)]


@tool
def search_along_route(query=""):
    """Search for points of interest along the route/way to the destination.

    Args:
        query (str, optional): The type of point of interest to search for. Defaults to "restaurant".

    """
    points = global_context["route_points"]
    # maybe reshape
    return search_along_route_w_coordinates(points, query)


def set_time(time_picker):
    vehicle.time = time_picker
    return vehicle


tools = [
    # StructuredTool.from_function(get_weather),
    # StructuredTool.from_function(find_route),
    # StructuredTool.from_function(vehicle_status_fn),
    # StructuredTool.from_function(set_vehicle_speed),
    # StructuredTool.from_function(set_vehicle_destination),
    # StructuredTool.from_function(search_points_of_interest),
    # StructuredTool.from_function(search_along_route),
    # StructuredTool.from_function(date_time_info),
    # StructuredTool.from_function(get_weather_current_location),
    # StructuredTool.from_function(code_interpreter),
    # StructuredTool.from_function(do_anything_else),
]

functions = [
    # set_vehicle_speed,
    set_vehicle_destination,
    get_weather,
    find_route,
    search_points_of_interest,
    search_along_route,
]
openai_tools = [convert_to_openai_tool(tool) for tool in functions]


def run_generic_model(query):
    print(f"Running the generic model with query: {query}")
    data = {
        "prompt": f"Answer the question below in a short and concise manner.\n{query}",
        "model": MODEL_GENERAL,
        "options": {
            # "temperature": 0.1,
            # "stop":["\nReflection:", "\nThought:"]
        },
    }
    out = ollama.generate(**data)
    return out["response"]


def clear_history():
    history.clear()


def run_nexusraven_model(query, voice_character, state):
    global_context["prompt"] = get_prompt(RAVEN_PROMPT_FUNC, query, "", tools)
    print("Prompt: ", global_context["prompt"])
    data = {
        "prompt": global_context["prompt"],
        # "streaming": False,
        "model": "nexusraven",
        # "model": "smangrul/llama-3-8b-instruct-function-calling",
        "raw": True,
        "options": {"temperature": 0.5, "stop": ["\nReflection:", "\nThought:"]},
    }
    out = ollama.generate(**data)
    llm_response = out["response"]
    if "Call: " in llm_response:
        print(f"llm_response: {llm_response}")
        llm_response = llm_response.replace("<bot_end>", " ")
        func_name, kwargs = extract_func_args(llm_response)
        print(f"Function: {func_name}, Args: {kwargs}")
        if func_name == "do_anything_else":
            output_text = run_generic_model(query)
        else:
            output_text = use_tool(func_name, kwargs, tools)
    else:
        output_text = out["response"]

    if type(output_text) == tuple:
        output_text = output_text[0]
    gr.Info(f"Output text: {output_text}\nGenerating voice output...")
    return (
        output_text,
        tts_gradio(output_text, voice_character, speaker_embedding_cache)[0],
    )


def run_llama3_model(query, voice_character, state):

    assert len(functions) > 0, "No functions to call"
    assert len(openai_tools) > 0, "No openai tools to call"

    output_text = process_query(
        query,
        history=history,
        user_preferences=state["user_preferences"],
        tools=openai_tools,
        functions=functions,
        backend=state["llm_backend"],
    )
    gr.Info(f"Output text: {output_text}\nGenerating voice output...")
    voice_out = None
    if global_context["tts_enabled"]:
        if "Fast" in voice_character:
            voice_out = run_melo_tts(output_text, voice_character)
        elif global_context["tts_backend"] == "replicate":
            voice_out = run_tts_replicate(output_text, voice_character)
        else:
            voice_out = tts_gradio(
                output_text, voice_character, speaker_embedding_cache
            )[0]
        #
        # voice_out = run_tts_fast(output_text)[0]
        #
    return (
        output_text,
        voice_out,
    )


def run_model(query, voice_character, state):
    model = state.get("model", "nexusraven")
    query = query.strip().replace("'", "")
    logger.info(
        f"Running model: {model} with query: {query}, voice_character: {voice_character} and llm_backend: {state['llm_backend']}, tts_enabled: {state['tts_enabled']}"
    )
    global_context["query"] = query
    if model == "nexusraven":
        text, voice = run_nexusraven_model(query, voice_character, state)
    elif model == "llama3":
        text, voice = run_llama3_model(query, voice_character, state)
    else:
        text, voice = "Error running model", None

    if not state["enable_history"]:
        history.clear()
    global_context["update_proxy"] += 1

    return (
        text,
        voice,
        vehicle.model_dump(),
        state,
        dict(update_proxy=global_context["update_proxy"]),
    )


def calculate_route_gradio(origin, destination):
    _, points = calculate_route(origin, destination)
    plot = kitt_utils.plot_route(points, vehicle=vehicle.location_coordinates)
    global_context["map"] = plot
    global_context["route_points"] = points
    # state.value["route_points"] = points
    vehicle.location_coordinates = points[0]["latitude"], points[0]["longitude"]
    return plot, vehicle.model_dump(), 0


def update_vehicle_status(trip_progress, origin, destination, state):
    if not global_context["route_points"]:
        _, points = calculate_route(origin, destination)
        global_context["route_points"] = points
    global_context["destination"] = destination
    global_context["route_points"] = global_context["route_points"]
    n_points = len(global_context["route_points"])
    index = min(int(trip_progress / 100 * n_points), n_points - 1)
    logger.info(f"Trip progress: {trip_progress} len: {n_points}, index: {index}")
    new_coords = global_context["route_points"][index]
    new_coords = new_coords["latitude"], new_coords["longitude"]
    logger.info(
        f"Trip progress: {trip_progress}, len: {n_points}, new_coords: {new_coords}"
    )
    vehicle.location_coordinates = new_coords
    new_vehicle_location = find_address(new_coords[0], new_coords[1])
    vehicle.location = new_vehicle_location
    plot = kitt_utils.plot_route(
        global_context["route_points"], vehicle=vehicle.location_coordinates
    )
    return vehicle, plot, state


device = "cuda" if torch.cuda.is_available() else "cpu"
transcriber = pipeline(
    "automatic-speech-recognition", model="openai/whisper-base.en", device=device
)


def save_audio_as_wav(data, sample_rate, file_path):
    # make a tensor from the numpy array
    data = torch.tensor(data).reshape(1, -1)
    torchaudio.save(
        file_path, data, sample_rate=sample_rate, bits_per_sample=16, encoding="PCM_S"
    )


def save_and_transcribe_audio(audio):
    try:
        # capture the audio and save it to a file as wav or mp3
        # file_name = save("audioinput.wav")
        sr, y = audio
        # y = y.astype(np.float32)
        # y /= np.max(np.abs(y))

        # add timestamp to file name
        filename = f"recordings/audio{time.time()}.wav"
        save_audio_as_wav(y, sr, filename)

        sr, y = audio
        y = y.astype(np.float32)
        y /= np.max(np.abs(y))
        text = transcriber({"sampling_rate": sr, "raw": y})["text"]
        gr.Info(f"Transcribed text is: {text}\nProcessing the input...")

    except Exception as e:
        logger.error(f"Error: {e}")
        raise Exception("Error transcribing audio.")
    return text


def save_and_transcribe_run_model(audio, voice_character, state):
    text = save_and_transcribe_audio(audio)
    out_text, out_voice, vehicle_status, state, update_proxy = run_model(
        text, voice_character, state
    )
    return None, text, out_text, out_voice, vehicle_status, state, update_proxy


def set_tts_enabled(tts_enabled, state):
    new_tts_enabled = tts_enabled == "Yes"
    logger.info(
        f"TTS enabled was {state['tts_enabled']} and changed to {new_tts_enabled}"
    )
    state["tts_enabled"] = new_tts_enabled
    global_context["tts_enabled"] = new_tts_enabled
    return state


def set_llm_backend(llm_backend, state):
    new_llm_backend = "ollama" if llm_backend == "Ollama" else "replicate"
    logger.info(
        f"LLM backend was {state['llm_backend']} and changed to {new_llm_backend}"
    )
    state["llm_backend"] = new_llm_backend
    global_context["llm_backend"] = new_llm_backend
    return state


def set_user_preferences(preferences, state):
    new_preferences = preferences
    logger.info(f"User preferences changed to: {new_preferences}")
    state["user_preferences"] = new_preferences
    global_context["user_preferences"] = new_preferences
    return state


def set_enable_history(enable_history, state):
    new_enable_history = enable_history == "Yes"
    logger.info(
        f"Enable history was {state['enable_history']} and changed to {new_enable_history}"
    )
    state["enable_history"] = new_enable_history
    global_context["enable_history"] = new_enable_history
    return state


def set_tts_backend(tts_backend, state):
    new_tts_backend = tts_backend.lower()
    logger.info(
        f"TTS backend was {state['tts_backend']} and changed to {new_tts_backend}"
    )
    state["tts_backend"] = new_tts_backend
    global_context["tts_backend"] = new_tts_backend
    return state


def conditional_update():
    if global_context["destination"] != vehicle.destination:
        global_context["destination"] = vehicle.destination

    if global_context["origin"] != vehicle.location:
        global_context["origin"] = vehicle.location

    if (
        global_context["map_origin"] != vehicle.location
        or global_context["map_destination"] != vehicle.destination
        or global_context["update_proxy"] == 0
    ):
        logger.info(f"Updating the map plot... in conditional_update")
        map_plot, _, _ = calculate_route_gradio(vehicle.location, vehicle.destination)
        global_context["map"] = map_plot
    return global_context["map"]


# to be able to use the microphone on chrome, you will have to go to chrome://flags/#unsafely-treat-insecure-origin-as-secure and enter http://10.186.115.21:7860/
# in "Insecure origins treated as secure", enable it and relaunch chrome

# example question:
# what's the weather like outside?
# What's the closest restaurant from here?


def create_demo(tts_server: bool = False, model="llama3"):
    print(f"Running the demo with model: {model} and TTSServer: {tts_server}")
    with gr.Blocks(theme=gr.themes.Default()) as demo:
        state = gr.State(
            value={
                # "context": initial_context,
                "query": "",
                "route_points": [],
                "model": model,
                "tts_enabled": ENABLE_TTS,
                "llm_backend": DEFAULT_LLM_BACKEND,
                "user_preferences": USER_PREFERENCES,
                "enable_history": ENABLE_HISTORY,
                "tts_backend": TTS_BACKEND,
                "destination": DESTINATION,
            }
        )

        plot, _, _ = calculate_route_gradio(ORIGIN, DESTINATION)
        global_context["map"] = plot

        with gr.Row():
            with gr.Column(scale=1, min_width=300):
                vehicle_status = gr.JSON(
                    value=vehicle.model_dump(), label="Vehicle status"
                )
                time_picker = gr.Dropdown(
                    choices=hour_options,
                    label="What time is it? (HH:MM)",
                    value="08:00:00",
                    interactive=True,
                )
                voice_character = gr.Radio(
                    choices=voice_options,
                    label="Choose a voice",
                    value=voice_options[0],
                    show_label=True,
                )
                # voice_character = gr.Textbox(
                #     label="Choose a voice",
                #     value="freeman",
                #     show_label=True,
                # )
                origin = gr.Textbox(
                    value=ORIGIN,
                    label="Origin",
                    interactive=True,
                )
                destination = gr.Textbox(
                    value=DESTINATION,
                    label="Destination",
                    interactive=True,
                )
                preferences = gr.Textbox(
                    value=USER_PREFERENCES,
                    label="User preferences",
                    lines=3,
                    interactive=True,
                )

            with gr.Column(scale=2, min_width=600):
                map_plot = gr.Plot(value=plot, label="Map")
                trip_progress = gr.Slider(
                    0, 100, step=5, label="Trip progress", interactive=True
                )

                # map_if = gr.Interface(fn=plot_map, inputs=year_input, outputs=map_plot)

        with gr.Row():
            with gr.Column():
                input_audio = gr.Audio(
                    type="numpy",
                    sources=["microphone"],
                    label="Input audio",
                    elem_id="input_audio",
                )
                input_text = gr.Textbox(
                    value="How is the weather?", label="Input text", interactive=True
                )
                with gr.Accordion("Debug"):
                    input_audio_debug = gr.Audio(
                        type="numpy",
                        sources=["microphone"],
                        label="Input audio",
                        elem_id="input_audio",
                    )
                    input_text_debug = gr.Textbox(
                        value="How is the weather?",
                        label="Input text",
                        interactive=True,
                    )
                    update_proxy = gr.JSON(
                        value=dict(update_proxy=0),
                        label="Global context",
                    )
                with gr.Accordion("Config"):
                    tts_enabled = gr.Radio(
                        ["Yes", "No"],
                        label="Enable TTS",
                        value="Yes" if ENABLE_TTS else "No",
                        interactive=True,
                    )
                    tts_backend = gr.Radio(
                        ["Local", "Replicate"],
                        label="TTS Backend",
                        value=TTS_BACKEND.title(),
                        interactive=True,
                    )
                    llm_backend = gr.Radio(
                        choices=["Ollama", "Replicate"],
                        label="LLM Backend",
                        value=DEFAULT_LLM_BACKEND.title(),
                        interactive=True,
                    )
                    enable_history = gr.Radio(
                        ["Yes", "No"],
                        label="Maintain the conversation history?",
                        value="Yes" if ENABLE_HISTORY else "No",
                        interactive=True,
                    )
                # Push button
                clear_history_btn = gr.Button(value="Clear History")
            with gr.Column():
                output_audio = gr.Audio(label="output audio", autoplay=True)
                output_text = gr.TextArea(
                    value="", label="Output text", interactive=False
                )

        # Update plot based on the origin and destination
        # Sets the current location and destination
        origin.submit(
            fn=calculate_route_gradio,
            inputs=[origin, destination],
            outputs=[map_plot, vehicle_status, trip_progress],
        )
        destination.submit(
            fn=calculate_route_gradio,
            inputs=[origin, destination],
            outputs=[map_plot, vehicle_status, trip_progress],
        )
        preferences.submit(
            fn=set_user_preferences, inputs=[preferences, state], outputs=[state]
        )

        # Update time based on the time picker
        time_picker.select(fn=set_time, inputs=[time_picker], outputs=[vehicle_status])

        # Run the model if the input text is changed
        input_text.submit(
            fn=run_model,
            inputs=[input_text, voice_character, state],
            outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
        )
        input_text_debug.submit(
            fn=run_model,
            inputs=[input_text_debug, voice_character, state],
            outputs=[output_text, output_audio, vehicle_status, state, update_proxy],
        )

        # Set the vehicle status based on the trip progress
        trip_progress.release(
            fn=update_vehicle_status,
            inputs=[trip_progress, origin, destination, state],
            outputs=[vehicle_status, map_plot, state],
        )

        # Save and transcribe the audio
        input_audio.stop_recording(
            fn=save_and_transcribe_run_model,
            inputs=[input_audio, voice_character, state],
            outputs=[
                input_audio,
                input_text,
                output_text,
                output_audio,
                vehicle_status,
                state,
                update_proxy,
            ],
        )
        input_audio_debug.stop_recording(
            fn=save_and_transcribe_audio,
            inputs=[input_audio_debug],
            outputs=[input_text_debug],
        )

        # Clear the history
        clear_history_btn.click(fn=clear_history, inputs=[], outputs=[])

        # Config
        tts_enabled.change(
            fn=set_tts_enabled, inputs=[tts_enabled, state], outputs=[state]
        )
        tts_backend.change(
            fn=set_tts_backend, inputs=[tts_backend, state], outputs=[state]
        )
        llm_backend.change(
            fn=set_llm_backend, inputs=[llm_backend, state], outputs=[state]
        )
        enable_history.change(
            fn=set_enable_history, inputs=[enable_history, state], outputs=[state]
        )
        update_proxy.change(fn=conditional_update, inputs=[], outputs=[map_plot])

    return demo


# close all interfaces open to make the port available
gr.close_all()


demo = create_demo(False, "llama3")
demo.launch(
    debug=True,
    server_name="0.0.0.0",
    server_port=7860,
    ssl_verify=False,
    share=False,
)

app = typer.Typer()


@app.command()
def run(tts_server: bool = False):
    global demo
    demo = create_demo(tts_server)
    demo.launch(
        debug=True, server_name="0.0.0.0", server_port=7860, ssl_verify=True, share=True
    )


@app.command()
def dev(tts_server: bool = False, model: str = "llama3"):
    demo = create_demo(tts_server, model)
    demo.launch(
        debug=True,
        server_name="0.0.0.0",
        server_port=7860,
        ssl_verify=False,
        share=False,
    )


if __name__ == "__main__":
    app()