Spaces:
Sleeping
Sleeping
File size: 3,085 Bytes
be60b2c d8082bf 949e503 d8082bf 6b16299 949e503 be60b2c 271278b be60b2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
from keras.models import load_model
from PIL import Image
import numpy as np
import cv2
import requests
import face_recognition
import os
from datetime import datetime
#the following are to do with this interactive notebook code
from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks
import pylab # this allows you to control figure size
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
import io
import streamlit as st
bytes_data=None
Images = []
classnames = []
myList = os.listdir()
#st.write(myList)
for cls in myList:
if os.path.splitext(cls)[1] == ".jpg" :
curImg = cv2.imread(f'{cls}')
Images.append(curImg)
classnames.append(os.path.splitext(cls)[0])
st.write(classnames)
def findEncodings(Images):
encodeList = []
for img in Images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
encodeListknown = findEncodings(Images)
st.write('Encoding Complete')
img_file_buffer=st.camera_input("Take a picture")
if img_file_buffer is not None:
test_image = Image.open(img_file_buffer)
st.image(test_image, use_column_width=True)
image = np.asarray(test_image)
#########################
imgS = cv2.resize(image,(0,0),None,0.25,0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
matches = face_recognition.compare_faces(encodeListknown,encodeFace)
faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
#print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classnames[matchIndex].upper()
st.write(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
##############
url = "https://rgiattendance.000webhostapp.com"
url1 = "/update.php"
data1 = {'name':name }
response = requests.post(url+url1, data=data1)
# # https://aimljul23f.glitch.me/fsave?nm=testname
# url = "https://aimljul23f.glitch.me/"
# url1 = "fsave?nm=" + name
# # data1 = {'name':name }
# response = requests.post(url+url1)
if response.status_code == 200 :
st.write(" data updated on : " + url)
else : st.write("data NOT updated " + url+url1)
##############################
st.image(image)
if bytes_data is None:
st.stop() |