Spaces:
Sleeping
Sleeping
File size: 6,224 Bytes
5f773d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# Description:Creates clusters based on the uploaded transcripts and returns the uuid of the documents that are similar to the query.
# Reference Code: https://github.com/chakib401/smoothing_sentence_embeddings/blob/master/utils.py
'''
Paper Citation for def normalize_adj():
Fettal, Chakib, Lazhar Labiod, and Mohamed Nadif.
"More Discriminative Sentence Embeddings via Semantic Graph Smoothing."
arXiv preprint arXiv:2402.12890 (2024).
'''
import json
import os
import joblib
import numpy as np
import pandas as pd
import scipy.sparse as sp
import src.clustering.resonate_semantic_search as SemanticSearch
from dotenv import load_dotenv
from langchain_openai import OpenAIEmbeddings
from scipy.io import loadmat, savemat
from sklearn.cluster import MeanShift, estimate_bandwidth
from sklearn.neighbors import kneighbors_graph
def normalize_adj(adj, lmbda=1):
'''
Normalize adjacency matrix of semantic graph
'''
adj = adj + lmbda * sp.eye(adj.shape[0])
rowsum = np.array(adj.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.0
r_mat_inv = sp.diags(r_inv)
adj = r_mat_inv.dot(adj)
adj = adj + lmbda * sp.eye(adj.shape[0])
adj = sp.coo_matrix(adj)
row_sum = np.array(adj.sum(1))
d_inv_sqrt = np.power(row_sum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo()
def graph_filtering(features, degree=2, lmbda=1, nn=10, alpha=0.5, t=5, method="sgc"):
"""
This function will perform graph filtering based on four polynomial filters
We keep n=10, as per paper. And is used to calculate the graph (adjacency matrix)
between 10 vectors/features.
**That is why we have 10 pre-existing transcripts placed in pinecone (through the ont_time_script)
**If you want to change the number of transcripts, you will have to change the number of neighbors
"""
adj = kneighbors_graph(features, n_neighbors=nn, metric="cosine")
adj = (adj + adj.T) / 2
S = normalize_adj(adj, lmbda)
xx = features
yy = features.copy()
if method in ["sgc", "s2gc"]:
for _ in range(degree):
xx = S @ xx
yy += xx
if method == "sgc":
return xx
elif method == "s2gc":
return yy
elif method == "appnp":
for _ in range(degree):
xx = (1 - alpha) * S @ xx + alpha * features
return xx
elif method == "dgc":
k = degree + 1
for _ in range(1, degree + 1):
xx = (1 - t / k) * xx + (t / k) * (S @ xx)
return xx
else:
raise "unrecognized filter"
def load_json_config(json_file_path="./config/config.json"):
with open(json_file_path, "r") as file:
data = json.load(file)
return data
class Clustering:
def __init__(self):
self.api_key = os.environ.get("OPENAI_API_KEY")
self.method = "dgc"
if not os.path.exists("./data/clusteringFiles/cluster_data.csv"):
self.create_Cluster()
self.index = self.initialize_FAISS()
def create_embedding(self):
'''This function will perform two task:
1. embedding on entire data, abstract_data.csv
2. save embeddings in cluster_data-embedding.mat in format uuid, text
'''
data = pd.read_csv("./data/summaryFiles/abstract_summary_data.csv")
json_config = load_json_config()
text, id = data["text"], data["uuid"]
# embedding model
embed = OpenAIEmbeddings(
model=json_config["EMBEDDING_MODEL_NAME"], openai_api_key=self.api_key
)
embeddings = embed.embed_documents(text)
savemat(
"./data/embeddingFiles/cluster-embedding.mat",
{"uuid": id, "text": embeddings},
)
def create_Cluster(self):
'''
This function will perform following tasks:
1. call embedding function
2. form clusters using cluste_data-embedding.mat file
3. Save predicted labels in cluster_data.csv
'''
self.create_embedding()
data = loadmat("./data/embeddingFiles/cluster-embedding.mat")
features1 = data["text"]
features = graph_filtering(features1, method=self.method)
ibandwidth = estimate_bandwidth(features, quantile=0.30, random_state=42)
msclustering = MeanShift(bandwidth=ibandwidth, max_iter=900)
msclustering.fit(features)
model_path = f"./data/clusteringFiles/{self.method}_model.joblib"
joblib.dump(msclustering, model_path)
print("Model saved")
df = pd.read_csv(f"./data/summaryFiles/abstract_summary_data.csv")
df["cluster"] = msclustering.predict(features)
df.to_csv("./data/clusteringFiles/cluster_data.csv")
print("Cluster data saved")
self.index = self.initialize_FAISS()
def uuid_for_query(self, query):
'''
Returns the uuids of the documents that are similar to the query, based on the clustering
'''
query_cluster_label = self.index.search_query(query)
print(f"Predicted Label : {query_cluster_label[0]}")
df = pd.read_csv("./data/clusteringFiles/cluster_data.csv")
filtered_uuids = df[df["cluster"] == query_cluster_label[0]]["uuid"].tolist()
return filtered_uuids
def initialize_FAISS(self):
model = SemanticSearch.SemanticEmbedding()
index = SemanticSearch.FaissForQuerySearch(model)
data = pd.read_csv("./data/clusteringFiles/cluster_data.csv")
features1 = data["text"]
uuids = data["uuid"]
labels = data["cluster"]
for text, uuid, label in zip(features1, uuids, labels):
index.add_summary(text, uuid, label)
return index
if __name__ == "__main__":
#load_dotenv("./config/.env")
Clustering_obj = Clustering()
print(
Clustering_obj.uuid_for_query(
"What is the goal of defining maintainability for the new diffs architecture?"
)
)
print(
Clustering_obj.uuid_for_query(
"What was the design component for remote control?"
)
)
|