File size: 8,568 Bytes
37c8ccd 1ee4720 37c8ccd c0412f7 aa77cec 3d91a45 0ed7c61 1ee4720 581179a 0bb49c6 b232be7 581179a 37c8ccd 1a66e6f aa77cec 1ee4720 37c8ccd 94d8833 1ee4720 581179a 37c8ccd 581179a 37c8ccd 581179a 2897982 581179a 47d8484 581179a 2897982 581179a 1a66e6f 840cbc5 1a66e6f 581179a 1a66e6f 47d8484 1a66e6f 47d8484 2897982 1a66e6f 581179a 47d8484 1a66e6f 47d8484 0bb49c6 16186bd 44e71d7 47d8484 0bb49c6 44e71d7 16186bd 47d8484 581179a 47d8484 581179a 47d8484 0bb49c6 47d8484 1a66e6f 47d8484 94d8833 28962fb 47d8484 44e71d7 0bb49c6 dcfef54 0bb49c6 dcfef54 e8e2063 28962fb 0bb49c6 28962fb 0bb49c6 07cff5b 0bb49c6 1bf613a 9a92806 1bf613a 283a922 9a92806 283a922 e19f5d0 581179a 1bf613a 47d8484 581179a 94d8833 581179a 94d8833 581179a 87f1324 581179a 87f1324 877944c 0a0456c 877944c dcfef54 877944c 630ac98 877944c 87f1324 0a0456c 87f1324 1bf613a 87f1324 581179a 37c8ccd 630ac98 62c2dcb 28962fb 1ee4720 3d91a45 87f1324 1ee4720 87f1324 1ee4720 87f1324 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
// connect to API via module
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1';
// import { HfInference } from 'https://cdn.jsdelivr.net/npm/@huggingface/inference@2.7.0/+esm';
// const inference = new HfInference();
// PIPELINE MODELS
// models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2')
// list of models by task: 'https://huggingface.co/docs/transformers.js/index#supported-tasksmodels'
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
env.allowLocalModels = false;
///////// VARIABLES
// establish global variables to reference later
var promptInput
var blanksArray = []
// pick a model (see list of models)
// INFERENCE MODELS
// let MODELNAME = "mistralai/Mistral-7B-Instruct-v0.2";
// models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', "meta-llama/Meta-Llama-3-70B-Instruct", 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2', "meta-llama/Meta-Llama-3-70B-Instruct")
// const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B', 'Xenova/LaMini-Flan-T5-783M');
///// p5 STUFF
// create an instance of the p5 class as a workspace for all your p5.js code
new p5(function (p5) {
p5.setup = function(){
console.log('p5 loaded')
p5.noCanvas()
makeInterface()
}
p5.draw = function(){
//
}
window.onload = function(){
console.log('dom and js loaded')
}
let fieldsDiv = document.querySelector("#blanks")
function makeInterface(){
console.log('reached makeInterface')
let title = p5.createElement('h1', 'p5.js Critical AI Prompt Battle')
// title.position(0,50)
p5.createElement('p',`This tool lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [XXX][TO-DO]`)
// .position(0,100)
promptInput = p5.createInput("")
// promptInput.position(0,160)
promptInput.size(600);
promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word on its own.`)
promptInput.value(`The [BLANK] works as a [FILL] but wishes for...`)
promptInput.addClass("prompt")
p5.createP(promptInput.attribute('label'))
// .position(0,100)
//make for loop to generate
//make a button to make another
//add them to the list of items
fieldsDiv = p5.createDiv()
fieldsDiv.id('fieldsDiv')
// fieldsDiv.position(0,250)
// initial code to make a single field
// blankA = p5.createInput("");
// blankA.position(0, 240);
// blankA.size(300);
// blankA.addClass("blank")
// blankA.parent('#fieldsDiv')
// function to generate a single BLANK form field instead
addField()
// // BUTTONS // //
// send prompt to model
let submitButton = p5.createButton("SUBMIT")
// submitButton.position(0,500)
submitButton.size(170)
submitButton.class('submit');
submitButton.mousePressed(getInputs)
// add more blanks to fill in
let addButton = p5.createButton("more blanks")
addButton.size(170)
// addButton.position(220,500)
addButton.mousePressed(addField)
// TO-DO a model drop down list?
// describe(``)
// TO-DO alt-text description
}
function addField(){
let f = p5.createInput("")
f.class("blank")
f.parent("#fieldsDiv")
// DOES THIS WORK???????????????????
blanksArray.push(f)
console.log("made field")
// Cap the number of fields, avoids token limit in prompt
let blanks = document.querySelectorAll(".blank")
if (blanks.length > 7){
console.log(blanks.length)
addButton.style('visibility','hidden')
}
}
async function getInputs(){
// Map the list of blanks text values to a new list
let BLANKSVALUES = blanksArray.map(i => i.value())
console.log(BLANKSVALUES)
// Do model stuff in this function instead of in general
let PROMPT = promptInput.value() // updated check of the prompt field
// BLANKS = inputValues // get ready to feed array list into model
let PREPROMPT = `Please return an array of sentences. In each sentence, fill in the [BLANK] in the following sentence with each word I provide in the array ${BLANKSVALUES}. Replace any [FILL] with an appropriate word of your choice.`
// we pass PROMPT and PREPROMPT to the model function, don't need to pass BLANKSVALUES bc it's passed into the PREPROMPT already here
let modelResult = await runModel(PREPROMPT, PROMPT)
await displayModel(modelResult)
}
async function displayModel(m){
modelDisplay = p5.createElement("p", "Results:");
await modelDisplay.html(m)
}
// async function showResults(){
// modelDisplay = p5.createElement("p", "Results:");
// // modelDisplay.position(0, 380);
// setTimeout(() => {
// modelDisplay.html(modelResult)
// }, 2000);
// }
// var modelResult = submitButton.mousePressed(runModel) = function(){
// // listens for the button to be clicked
// // run the prompt through the model here
// // modelResult = runModel()
// // return modelResult
// runModel()
// }
// function makeblank(i){
// i = p5.createInput("");
// i.position(0, 300); //append to last blank and move buttons down
// i.size(200);
// }
});
///// MODEL STUFF
async function runModel(PREPROMPT, PROMPT){
// // Chat completion API
// pipeline/transformers version TEST
let pipe = await pipeline('text-generation', 'Xenova/distilgpt2');
// 'meta-llama/Meta-Llama-3-70B-Instruct'
// 'openai-community/gpt2'
// 'Xenova/gpt-3.5-turbo'
out = await pipe((PREPROMPT, PROMPT), {
max_tokens: 250,
return_full_text: false,
repetition_penalty: 1.5,
num_return_sequences: 2
})
// out = await pipe((PREPROMPT, PROMPT))
console.log(out)
var modelResult = await out.generated_text
console.log(modelResult)
return modelResult
}
// inference API version, not working in spaces
// const out = await inference.chatCompletion({
// model: MODELNAME,
// messages: [{ role: "user", content: PREPROMPT + PROMPT }],
// max_tokens: 100
// });
// console.log(out)
// // modelResult = await out.messages[0].content
// var modelResult = await out.choices[0].message.content
// // var modelResult = await out[0].generated_text
// console.log(modelResult);
// return modelResult
//inference.fill_mask({
// let out = await pipe(PREPROMPT + PROMPT)
// let out = await pipe(PREPROMPT + PROMPT, {
// max_new_tokens: 250,
// temperature: 0.9,
// // return_full_text: False,
// repetition_penalty: 1.5,
// // no_repeat_ngram_size: 2,
// // num_beams: 2,
// num_return_sequences: 1
// });
// var PROMPT = `The [BLANK] works as a [blank] but wishes for [blank].`
// /// this needs to run on button click, use string variables to blank in the form
// var PROMPT = promptInput.value()
// var blanksArray = ["mother", "father", "sister", "brother"]
// // for num of blanks put in list
// var blanksArray = [`${blankAResult}`, `${blankBResult}`, `${blankCResult}`]
//Error: Server Xenova/distilgpt2 does not seem to support chat completion. Error: HfApiJson(Deserialize(Error("unknown variant `transformers.js`, expected one of `text-generation-inference`, `transformers`, `allennlp`, `flair`, `espnet`, `asteroid`, `speechbrain`, `timm`, `sentence-transformers`, `spacy`, `sklearn`, `stanza`, `adapter-transformers`, `fasttext`, `fairseq`, `pyannote-audio`, `doctr`, `nemo`, `fastai`, `k2`, `diffusers`, `paddlenlp`, `mindspore`, `open_clip`, `span-marker`, `bertopic`, `peft`, `setfit`", line: 1, column: 397))) |