File size: 10,150 Bytes
e871332 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
// connect to API via module
import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.10.1';
// import { HfInference } from 'https://cdn.jsdelivr.net/npm/@huggingface/inference@2.7.0/+esm';
// const inference = new HfInference();
// PIPELINE MODELS
// models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2')
// list of models by task: 'https://huggingface.co/docs/transformers.js/index#supported-tasksmodels'
// Since we will download the model from the Hugging Face Hub, we can skip the local model check
env.allowLocalModels = false;
///////// VARIABLES
// establish global variables to reference later
var promptInput
var blanksArray = []
// pick a model (see list of models)
// INFERENCE MODELS
// let MODELNAME = "mistralai/Mistral-7B-Instruct-v0.2";
// models('Xenova/gpt2', 'Xenova/gpt-3.5-turbo', 'mistralai/Mistral-7B-Instruct-v0.2', 'Xenova/llama-68m', "meta-llama/Meta-Llama-3-70B-Instruct", 'meta-llama/Meta-Llama-3-8B', 'Xenova/bloom-560m', 'Xenova/distilgpt2', "meta-llama/Meta-Llama-3-70B-Instruct")
// const detector = await pipeline('text-generation', 'meta-llama/Meta-Llama-3-8B', 'Xenova/LaMini-Flan-T5-783M');
///// p5 STUFF
// create an instance of the p5 class as a workspace for all your p5.js code
new p5(function (p5) {
p5.setup = function(){
console.log('p5 instance loaded')
p5.noCanvas()
makeInterface()
}
p5.draw = function(){
//
}
// window.onload = function(){
// console.log('p5 instance loaded')
// }
let fieldsDiv = document.querySelector("#blanks")
function makeInterface(){
console.log('reached makeInterface')
let title = p5.createElement('h1', 'p5.js Critical AI Prompt Battle')
// title.position(0,50)
p5.createElement('p',`This tool lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. For more information on prompt programming and critical AI, see [Tutorial & extra info][TO-DO][XXX]`)
// .position(0,100)
promptInput = p5.createInput("")
// promptInput.position(0,160)
promptInput.size(600);
promptInput.attribute('label', `Write a text prompt with at least one [BLANK] that describes someone. You can also write [FILL] where you want the bot to fill in a word on its own.`)
promptInput.value(`The [BLANK] works as a [FILL] but wishes for...`)
promptInput.addClass("prompt")
p5.createP(promptInput.attribute('label'))
// .position(0,100)
//make for loop to generate
//make a button to make another
//add them to the list of items
fieldsDiv = p5.createDiv()
fieldsDiv.id('fieldsDiv')
// fieldsDiv.position(0,250)
// initial code to make a single field
// blankA = p5.createInput("");
// blankA.position(0, 240);
// blankA.size(300);
// blankA.addClass("blank")
// blankA.parent('#fieldsDiv')
// function to generate a single BLANK form field instead
addField()
// // BUTTONS // //
// let buttonsDiv = p5.createDiv() // container to organize buttons
// buttonsDiv.id('buttonsDiv')
// send prompt to model
let submitButton = p5.createButton("SUBMIT")
// submitButton.position(0,500)
submitButton.size(170)
submitButton.class('submit');
// submitButton.parent('#buttonsDiv')
submitButton.mousePressed(getInputs)
// add more blanks to fill in
let addButton = p5.createButton("more blanks")
addButton.size(170)
// addButton.position(220,500)
// addButton.parent('#buttonsDiv')
addButton.mousePressed(addField)
// TO-DO a model drop down list?
// alt-text description
// p5.describe(`Pink and black text on a white background with form inputs and two buttons. The text describes a p5.js Critical AI Prompt Battle tool that lets you run several AI chat prompts at once and compare their results. Use it to explore what models 'know' about various concepts, communities, and cultures. In the largest form input you can write a prompt to submit. In smaller inputs, you can write variables that will be inserted into that prompt as variations of the prompt when it is run through the model. There is a submit button, a button to add more variations, and when the model is run it adds text at the bottom showing the output results.`)
}
function addField(){
let f = p5.createInput("")
f.class("blank")
f.parent("#fieldsDiv")
// DOES THIS WORK???????????????????
blanksArray.push(f)
console.log("made field")
// Cap the number of fields, avoids token limit in prompt
let blanks = document.querySelectorAll(".blank")
if (blanks.length > 7){
console.log(blanks.length)
addButton.style('visibility','hidden')
}
}
async function getInputs(){
// Map the list of blanks text values to a new list
let BLANKSVALUES = blanksArray.map(i => i.value())
console.log(BLANKSVALUES)
// Do model stuff in this function instead of in general
let PROMPT = promptInput.value() // updated check of the prompt field
// BLANKS = inputValues // get ready to feed array list into model
let PREPROMPT = `In the sentence I provide, please fill in the [BLANK] with each word in the array ${BLANKSVALUES}, replace any [FILL] with a word of your choice. Here is the SAMPLE SENTENCE: `
// we pass PROMPT and PREPROMPT to the model function, don't need to pass BLANKSVALUES bc it's passed into the PREPROMPT already here
// Please return an array of sentences based on the sample sentence to follow. In each sentence,
let modelResult = await runModel(PREPROMPT, PROMPT)
await displayModel(modelResult)
}
async function displayModel(m){
let modelDisplay = p5.createElement("p", "Results:");
await modelDisplay.html(m)
}
});
///// MODEL STUFF
async function runModel(PREPROMPT, PROMPT){
// // Chat completion API
// pipeline/transformers version
// let pipe = await pipeline('text-generation', 'Xenova/distilgpt2');
// seems to work with default model distilgpt2 ugh
// IMPORTANT: different models have different input/output structures for their API so look to the samples and references on the specific model page for help :)
// 'meta-llama/Meta-Llama-3-70B-Instruct'
// 'openai-community/gpt2'
// 'Xenova/gpt-3.5-turbo'
// , 'Xenova/distilgpt2'
// let res = await pipe(inputText, {
// max_tokens: 250,
// return_full_text: false
// repetition_penalty: 1.5,
// num_return_sequences: 1 //must be 1 for greedy search
// })
// let generator = pipeline("text-generation", "HuggingFaceH4/zephyr-7b-beta")
let MESSAGES = PREPROMPT + PROMPT
// for zephyr customizing
// let MESSAGES = [
// {
// "role": "system",
// "content": PREPROMPT
// },{
// "role": "user",
// "content": PROMPT
// }
// ]
// let res = await pipe(MESSAGES, {
// max_new_tokens: 150,
// temperature: 0.7,
// top_k: 50,
// top_p: 0.95
// });
let generator = pipeline('text-generation', 'Xenova/distilgpt2')
let res = await generator(MESSAGES)
console.log(res)
var modelResult = await res[0].generated_text
// var modelResult = await res[0].generated_text[0].content
console.log(modelResult)
return modelResult
}
// inference API version, not working in spaces
// const out = await inference.chatCompletion({
// model: MODELNAME,
// messages: [{ role: "user", content: PREPROMPT + PROMPT }],
// max_tokens: 100
// });
// console.log(out)
// // modelResult = await out.messages[0].content
// var modelResult = await out.choices[0].message.content
// // var modelResult = await out[0].generated_text
// console.log(modelResult);
// return modelResult
//inference.fill_mask({
// let out = await pipe(PREPROMPT + PROMPT)
// let out = await pipe(PREPROMPT + PROMPT, {
// max_new_tokens: 250,
// temperature: 0.9,
// // return_full_text: False,
// repetition_penalty: 1.5,
// // no_repeat_ngram_size: 2,
// // num_beams: 2,
// num_return_sequences: 1
// });
// Must be one of [text-classification,token-classification,question-answering,fill-mask,summarization,translation,text2text-generation,text-generation,zero-shot-classification,audio-classification,zero-shot-audio-classification,automatic-speech-recognition,text-to-audio,image-to-text,image-classification,image-segmentation,zero-shot-image-classification,object-detection,zero-shot-object-detection,document-question-answering,image-to-image,depth-estimation,feature-extraction]
// var PROMPT = `The [BLANK] works as a [blank] but wishes for [blank].`
// /// this needs to run on button click, use string variables to blank in the form
// var PROMPT = promptInput.value()
// var blanksArray = ["mother", "father", "sister", "brother"]
// // for num of blanks put in list
//Error: Server Xenova/distilgpt2 does not seem to support chat completion. Error: HfApiJson(Deserialize(Error("unknown variant `transformers.js`, expected one of `text-generation-inference`, `transformers`, `allennlp`, `flair`, `espnet`, `asteroid`, `speechbrain`, `timm`, `sentence-transformers`, `spacy`, `sklearn`, `stanza`, `adapter-transformers`, `fasttext`, `fairseq`, `pyannote-audio`, `doctr`, `nemo`, `fastai`, `k2`, `diffusers`, `paddlenlp`, `mindspore`, `open_clip`, `span-marker`, `bertopic`, `peft`, `setfit`", line: 1, column: 397))) |