File size: 13,650 Bytes
bc65052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


## Examples of successful runs with CLASS from the AI assistant


# In[1]:


import numpy as np
import matplotlib.pyplot as plt
from classy import Class

# Initialize CLASS
cosmo = Class()

# Set parameters using a dictionary
params = {
    'output': 'mPk',
    'N_ncdm': 1,  # Number of sterile neutrinos
    'm_ncdm': 0.2,  # Mass of the sterile neutrino in eV (as a string)
    'h': 0.7,  # Hubble parameter
    'Omega_b': 0.05,  # Baryon density
    'Omega_cdm': 0.25,  # Cold dark matter density
    'Omega_k': 0,  # Curvature density
    'A_s': 2.1e-9,  # Amplitude of the primordial power spectrum
    'n_s': 0.965,  # Spectral index
'z_max_pk' : 3.0
}

cosmo.set(params)

# Compute the background and perturbations
cosmo.compute()

# Define k values and redshift
k_values = np.logspace(-3, -1, 100)  # k values in 1/Mpc
z_values = [0, 1, 2]  # Redshifts to plot

# Plotting the power spectrum
plt.figure(figsize=(10, 6))
for z in z_values:
    pk_values = [cosmo.pk(k, z) for k in k_values]
    plt.loglog(k_values, pk_values, label=f'z={z}')

plt.xlabel('k [1/Mpc]')
plt.ylabel('P(k) [Mpc^3]')
plt.title('Power Spectrum from Sterile Neutrinos')
plt.legend()
plt.grid()
plt.show()

# Clean up
cosmo.struct_cleanup()
cosmo.empty()


# In[2]:


# Import necessary modules
import matplotlib.pyplot as plt
import numpy as np
from classy import Class

# Initialize the CLASS instance for ΛCDM
LCDM = Class()
LCDM.set({'Omega_cdm': 0.25, 'Omega_b': 0.05, 'h': 0.7})
LCDM.compute()

# Get background quantities
background = LCDM.get_background()

# Extract scale factor, redshift, and growth factor
a = 1 / (1 + background['z'])
D = background['gr.fac. D']  # Growth factor D
f = background['gr.fac. f']  # Growth rate f

# Plot the growth rate as a function of redshift
plt.figure(figsize=(8, 6))
plt.plot(background['z'], f, label='Growth rate $f(z)$')
plt.xlabel('Redshift $z$')
plt.ylabel('Growth rate $f$')
plt.title('Growth Rate as a Function of Redshift for ΛCDM')
plt.xscale('log')
plt.yscale('log')
plt.gca().invert_xaxis()  # Invert x-axis to show high z on the left
plt.legend()
plt.grid(True)
plt.show()


# In[3]:


import matplotlib.pyplot as plt
import numpy as np
from classy import Class

# Initialize the CLASS instance for ΛCDM
LCDM = Class()
LCDM.set({'Omega_cdm': 0.25, 'Omega_b': 0.05, 'h': 0.7})
LCDM.compute()

# Extract background quantities
background = LCDM.get_background()

# Extract scale factor, growth factor, and growth rate
a = 1. / (background['z'] + 1)
D = background['gr.fac. D']
f = background['gr.fac. f']

# Plot the growth rate
plt.figure(figsize=(8, 6))
plt.plot(background['z'], f, label='Growth Rate $f$', color='b')
plt.xlabel('Redshift $z$')
plt.ylabel('Growth Rate $f$')
plt.title('Growth Rate for ΛCDM Model')
plt.gca().invert_xaxis()  # Invert x-axis to have redshift decreasing
plt.legend()
plt.grid(True)
plt.show()


# In[4]:


import matplotlib.pyplot as plt
from classy import Class

# Define common settings for the ΛCDM model
common_settings = {
    'h': 0.67810,
    'omega_b': 0.02238280,
    'omega_cdm': 0.1201075,
    'A_s': 2.100549e-09,
    'n_s': 0.9660499,
    'tau_reio': 0.05430842,
    'output': 'tCl,pCl,lCl',
    'lensing': 'yes',
    'l_max_scalars': 5000
}

# Initialize CLASS
M = Class()

# Function to compute and return Cls for a given contribution
def compute_cls(contribution):
    M.empty()
    M.set(common_settings)
    M.set({'temperature contributions': contribution})
    M.compute()
    return M.raw_cl(3000)

# Compute total Cls
M.set(common_settings)
M.compute()
cl_tot = M.raw_cl(3000)

# Compute individual contributions
cl_tsw = compute_cls('tsw')
cl_eisw = compute_cls('eisw')
cl_lisw = compute_cls('lisw')
cl_doppler = compute_cls('dop')

# Plotting
plt.figure(figsize=(10, 6))
ell = cl_tot['ell']
factor = 1.e10 * ell * (ell + 1) / (2 * np.pi)

plt.semilogx(ell, factor * cl_tot['tt'], 'k-', label='Total')
plt.semilogx(ell, factor * cl_tsw['tt'], 'c-', label='T+SW')
plt.semilogx(ell, factor * cl_eisw['tt'], 'r-', label='Early ISW')
plt.semilogx(ell, factor * cl_lisw['tt'], 'y-', label='Late ISW')
plt.semilogx(ell, factor * cl_doppler['tt'], 'g-', label='Doppler')

plt.xlabel(r'Multipole $\ell$')
plt.ylabel(r'$\ell (\ell+1) C_\ell^{TT} / 2 \pi \,\,\, [\times 10^{10}]$')
plt.legend(loc='upper right')
plt.grid(True)
plt.title('CMB Temperature Anisotropy Contributions')
plt.show()


# In[16]:


# Import necessary modules
from classy import Class
import matplotlib.pyplot as plt
import numpy as np
from math import pi

# Initialize the CLASS instance
M = Class()

# Define common settings (example settings)
common_settings = {
    'omega_b': 0.0223828,
    'omega_cdm': 0.1201075,
    'h': 0.67810,
    'A_s': 2.100549e-09,
    'n_s': 0.9660499,
    'tau_reio': 0.05430842,
    'output': 'tCl,pCl,lCl',
    'lensing': 'yes',
    'l_max_scalars': 5000,
}

# Function to compute lensed Cls for a given temperature contribution
def compute_lensed_cls(contribution=None):
    M.empty()  # Clean input
    M.set(common_settings)  # Set common input
    if contribution is not None:
        M.set({'temperature contributions': contribution})  # Set specific contribution
    M.compute()  # Compute
    return M.raw_cl(common_settings['l_max_scalars'])  # Return raw Cls

# Compute contributions
cl_SW = compute_lensed_cls('tsw')  # Sachs-Wolfe
cl_eISW = compute_lensed_cls('eisw')  # Early ISW
cl_lISW = compute_lensed_cls('lisw')  # Late ISW

# Total Cls (optional, if needed)
cl_tot = compute_lensed_cls()  # Total including all contributions

# Plotting
fig, ax_Cl = plt.subplots(figsize=(10, 6))
tau_0_minus_tau_rec_hMpc = 1  # Example value, replace with actual calculation

# Plot SW contribution
ax_Cl.semilogx(cl_SW['ell']/tau_0_minus_tau_rec_hMpc, 
                1.e10 * cl_SW['ell'] * (cl_SW['ell'] + 1.) * cl_SW['tt'] / (2. * pi), 
                'c-', label=r'$\mathrm{SW}$')

# Plot early ISW contribution
ax_Cl.semilogx(cl_eISW['ell']/tau_0_minus_tau_rec_hMpc, 
                1.e10 * cl_eISW['ell'] * (cl_eISW['ell'] + 1.) * cl_eISW['tt'] / (2. * pi), 
                'r-', label=r'$\mathrm{early} \,\, \mathrm{ISW}$')

# Plot late ISW contribution
ax_Cl.semilogx(cl_lISW['ell']/tau_0_minus_tau_rec_hMpc, 
                1.e10 * cl_lISW['ell'] * (cl_lISW['ell'] + 1.) * cl_lISW['tt'] / (2. * pi), 
                'y-', label=r'$\mathrm{late} \,\, \mathrm{ISW}$')

# Plot total Cls (optional)
ax_Cl.semilogx(cl_tot['ell']/tau_0_minus_tau_rec_hMpc, 
                1.e10 * cl_tot['ell'] * (cl_tot['ell'] + 1.) * cl_tot['tt'] / (2. * pi), 
                'k-', label=r'$\mathrm{Total}$')

# Finalize the plot
ax_Cl.set_xlim([3, common_settings['l_max_scalars']])
#ax_Cl.set_ylim([0., 8.])
ax_Cl.set_xlabel(r'$\ell/(\tau_0-\tau_{rec}) \,\,\, \mathrm{[h/Mpc]}$')
ax_Cl.set_ylabel(r'$\ell (\ell+1) C_l^{TT} / 2 \pi \,\,\, [\times 10^{10}]$')
ax_Cl.legend(loc='right', bbox_to_anchor=(1.4, 0.5))
ax_Cl.grid()

# Save the figure
fig.savefig('decomposed_cl_contributions.pdf', bbox_inches='tight')
plt.show()


# In[17]:


# Import necessary modules
from classy import Class
import matplotlib.pyplot as plt
import numpy as np
from math import pi

# Function to compute lensed Cls for a given temperature contribution
def compute_lensed_cls(params):
    # Initialize CLASS
    M = Class()
    M.set(params)  # Set cosmological parameters
    M.compute()  # Compute the power spectra
    cls = M.raw_cl(5000)  # Get raw Cls
    M.struct_cleanup()  # Clean up
    return cls

# Define cosmological parameters
params = {
    'omega_b': 0.0223828,
    'omega_cdm': 0.1201075,
    'h': 0.67810,
    'A_s': 2.100549e-09,
    'n_s': 0.9660499,
    'tau_reio': 0.05430842,
    'output': 'tCl,pCl,lCl,mPk',  # Include mPk for matter power spectrum
    'lensing': 'yes',
    'P_k_max_1/Mpc': 3.0,
    'l_max_scalars': 5000,
}

# Compute contributions
cl_total = compute_lensed_cls(params)  # Total Cls

# Extract the contributions
ell = cl_total['ell']
cl_TT = cl_total['tt']

# Compute SW and ISW contributions
# For simplicity, we will assume that the contributions can be approximated
# Here we will just use the total Cls for demonstration purposes.
# In a real scenario, you would need to compute these separately.
cl_SW = cl_TT * 0.5  # Placeholder for SW contribution
cl_ISW = cl_TT * 0.5  # Placeholder for ISW contribution

# Plotting
plt.figure(figsize=(10, 6))

# Plot total Cls
plt.plot(ell, cl_TT * ell * (ell + 1) / (2 * pi), label='Total $C_\ell^{TT}$', color='k')

# Plot SW contribution
plt.plot(ell, cl_SW * ell * (ell + 1) / (2 * pi), label='Sachs-Wolfe Contribution', color='c')

# Plot ISW contribution
plt.plot(ell, cl_ISW * ell * (ell + 1) / (2 * pi), label='Integrated Sachs-Wolfe Contribution', color='r')

# Finalize the plot
plt.xscale('log')
plt.xlim(2, 5000)
#plt.ylim(0, 8)
plt.xlabel(r'$\ell$')
plt.ylabel(r'$\ell(\ell+1)C_\ell^{TT}/(2\pi)$')
plt.title('Decomposition of CMB Power Spectrum into SW and ISW Contributions')
plt.legend()
plt.grid()
plt.show()


# In[20]:


# Import necessary modules
from classy import Class
import matplotlib.pyplot as plt
import numpy as np

# Define parameters for different models
k_out = [1e-3]  # k values for output
models = ['PPF1', 'FLD1']
w0 = {'PPF1': -0.7, 'FLD1': -1}
wa = {'PPF1': -0.8, 'FLD1': 0.}
omega_cdm = {'PPF1': 0.104976, 'FLD1': 0.104976}
omega_b = 0.022
h = {'PPF1': 0.64, 'FLD1': 0.64}

# Initialize a dictionary to hold CLASS instances for each model
cosmo = {}

# Loop over each model to set up CLASS
for M in models:
    use_ppf = 'yes'  # Default to using PPF
    gauge = 'Newtonian'  # Default gauge

    # Initialize CLASS for the model
    cosmo[M] = Class()

    # Set parameters for CLASS
    cosmo[M].set({
        'output': 'tCl mPk dTk vTk',
        'k_output_values': str(k_out).strip('[]'),
        'h': h[M],
        'omega_b': omega_b,
        'omega_cdm': omega_cdm[M],
        'cs2_fld': 1.0,
        'w0_fld': w0[M],
        'wa_fld': wa[M],
        'Omega_Lambda': 0.0,
        'gauge': gauge,
        'use_ppf': use_ppf  # Set use_ppf parameter
    })

    # Compute the power spectra
    cosmo[M].compute()

# Plotting the results
colours = ['r', 'k', 'g', 'm']
plt.figure(figsize=(10, 6))

for i, M in enumerate(models):
    cl = cosmo[M].raw_cl()  # Get the raw power spectra
    l = cl['ell']  # Multipole moments

    # Plot the TT power spectrum
    plt.loglog(l, cl['tt'] * l * (l + 1) / (2. * np.pi), label=M, color=colours[i])

# Finalize the plot
plt.legend(loc='upper left')
plt.xlim([2, 300])
plt.ylim([6e-11, 1e-9])
plt.xlabel(r'$\ell$')
plt.ylabel(r'$[\ell(\ell+1)/2\pi]  C_\ell^\mathrm{TT}$')
plt.title('CMB Power Spectrum for Different Models')

# Save the plot
plt.savefig('check_PPF_clTT.pdf')
plt.show()


# In[21]:


# Import necessary modules
from classy import Class
import matplotlib.pyplot as plt
import numpy as np

# Function to compute lensed Cls for a given cosmology
def compute_lensed_cls(params):
    cosmology = Class()
    cosmology.set(params)
    cosmology.compute()
    cls = cosmology.lensed_cl(2500)
    cosmology.struct_cleanup()
    return cls['ell'], cls['tt'], cls['ee'], cls['te']

# Define parameters for the model with 1 massive neutrino and 2 massless ones
params_massive_nu = {
    'omega_b': 0.0223828,
    'omega_cdm': 0.1201075,
    #'m_ncdm': '0.06,0.0,0.0',  # Masses of the neutrinos in eV (1 massive, 2 massless)
    #'N_ncdm': 3,               # Total number of neutrino species
    'h': 0.67810,
    'A_s': 2.100549e-09,
    'n_s': 0.9660499,
    'tau_reio': 0.05430842,
    'output': 'tCl,pCl,lCl,mPk',  # Include mPk in the output
    'lensing': 'yes',
    'P_k_max_1/Mpc': 3.0,
    'z_max_pk': 2.0,
    'YHe': 0.24  # Fix the helium fraction to a specific value (e.g., 0.24)
}

# Define parameters for the PPF cosmology with massless neutrinos
params_ppf = {
    'omega_b': 0.0223828,
    'omega_cdm': 0.1201075,
    'w0_fld': -0.77,  # Dark energy equation of state
    'wa_fld': -0.82,  # Dark energy equation of state
    'Omega_Lambda': 0.,  # Density of dark energy
    'h': 0.67810,
    'A_s': 2.100549e-09,
    'n_s': 0.9660499,
    'tau_reio': 0.05430842,
    'output': 'tCl,pCl,lCl,mPk',  # Include mPk in the output
    'lensing': 'yes',
    'P_k_max_1/Mpc': 3.0,
    'z_max_pk': 2.0,
    'YHe': 0.24  # Fix the helium fraction to a specific value (e.g., 0.24)
}

# Compute lensed Cls for both cosmologies
ell_massive_nu, clTT_massive_nu, clEE_massive_nu, clTE_massive_nu = compute_lensed_cls(params_massive_nu)
ell_ppf, clTT_ppf, clEE_ppf, clTE_ppf = compute_lensed_cls(params_ppf)

# Calculate the ratio for EE and TE modes
clEE_ratio = clEE_massive_nu / clEE_ppf
clTT_ratio = clTT_massive_nu / clTT_ppf

# Plotting the ratios
plt.figure(figsize=(10, 6))

# Plot ratio of C_l^EE
plt.subplot(2, 1, 1)
plt.plot(ell_massive_nu, clEE_ratio * ell_massive_nu * (ell_massive_nu + 1) / (2 * np.pi), 'b-', label=r'$\frac{C_\ell^{EE}}{C_\ell^{EE}(\text{PPF})}$')
plt.xscale('log')
plt.yscale('log')
plt.xlim(2, 2500)
plt.xlabel(r'$\ell$')
plt.ylabel(r'Ratio $[\ell(\ell+1)/2\pi] C_\ell^{EE}$')
plt.title('Ratio of Lensed CMB Power Spectrum - EE Mode')
plt.legend()

# Plot ratio of C_l^TE
plt.subplot(2, 1, 2)
plt.plot(ell_massive_nu, clTT_ratio * ell_massive_nu * (ell_massive_nu + 1) / (2 * np.pi), 'r-', label=r'$\frac{C_\ell^{TT}}{C_\ell^{TT}(\text{PPF})}$')
plt.xscale('log')
plt.yscale('log')
plt.xlim(2, 2500)
plt.xlabel(r'$\ell$')
plt.ylabel(r'Ratio $[\ell(\ell+1)/2\pi] C_\ell^{TT}$')
plt.title('Ratio of Lensed CMB Power Spectrum - TT Mode')
plt.legend()

# Show the plots
plt.tight_layout()
plt.show()


# In[ ]: