File size: 26,894 Bytes
bc65052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
Function: _check_task_dependency(self, level)
Docstring:

        Fill the level list with all the needed modules

        .. warning::

            the ordering of modules is obviously dependent on CLASS module order
            in the main.c file. This has to be updated in case of a change to
            this file.

        Parameters
        ----------

        level : list
            list of strings, containing initially only the last module required.
            For instance, to recover all the modules, the input should be
            ['lensing']

        
---------------------------------
Function: compute(self, level=["distortions"])
Docstring:

        compute(level=["distortions"])

        Main function, execute all the _init methods for all desired modules.
        This is called in MontePython, and this ensures that the Class instance
        of this class contains all the relevant quantities. Then, one can deduce
        Pk, Cl, etc...

        Parameters
        ----------
        level : list
                list of the last module desired. The internal function
                _check_task_dependency will then add to this list all the
                necessary modules to compute in order to initialize this last
                one. The default last module is "lensing".

        .. warning::

            level default value should be left as an array (it was creating
            problem when casting as a set later on, in _check_task_dependency)

        
---------------------------------
Function: density_factor(self)
Docstring:

        The density factor required to convert from the class-units of density to kg/m^3 (SI units)
        
---------------------------------
Function: kgm3_to_eVMpc3(self)
Docstring:

        Convert from kg/m^3 to eV/Mpc^3
        
---------------------------------
Function: kgm3_to_MsolMpc3(self)
Docstring:

        Convert from kg/m^3 to Msol/Mpc^3
        
---------------------------------
Function: raw_cl(self, lmax=-1, nofail=False)
Docstring:

        raw_cl(lmax=-1, nofail=False)

        Return a dictionary of the primary C_l

        Parameters
        ----------
        lmax : int, optional
                Define the maximum l for which the C_l will be returned
                (inclusively). This number will be checked against the maximum l
                at which they were actually computed by CLASS, and an error will
                be raised if the desired lmax is bigger than what CLASS can
                give.
        nofail: bool, optional
                Check and enforce the computation of the harmonic module
                beforehand, with the desired lmax.

        Returns
        -------
        cl : dict
                Dictionary that contains the power spectrum for 'tt', 'te', etc... The
                index associated with each is defined wrt. Class convention, and are non
                important from the python point of view. It also returns now the
                ell array.
        
---------------------------------
Function: lensed_cl(self, lmax=-1,nofail=False)
Docstring:

        lensed_cl(lmax=-1, nofail=False)

        Return a dictionary of the lensed C_l, computed by CLASS, without the
        density C_ls. They must be asked separately with the function aptly
        named density_cl

        Parameters
        ----------
        lmax : int, optional
                Define the maximum l for which the C_l will be returned (inclusively)
        nofail: bool, optional
                Check and enforce the computation of the lensing module beforehand

        Returns
        -------
        cl : dict
                Dictionary that contains the power spectrum for 'tt', 'te', etc... The
                index associated with each is defined wrt. Class convention, and are non
                important from the python point of view.
        
---------------------------------
Function: density_cl(self, lmax=-1, nofail=False)
Docstring:

        density_cl(lmax=-1, nofail=False)

        Return a dictionary of the primary C_l for the matter

        Parameters
        ----------
        lmax : int, optional
            Define the maximum l for which the C_l will be returned (inclusively)
        nofail: bool, optional
            Check and enforce the computation of the lensing module beforehand

        Returns
        -------
        cl : numpy array of numpy.ndarrays
            Array that contains the list (in this order) of self correlation of
            1st bin, then successive correlations (set by non_diagonal) to the
            following bins, then self correlation of 2nd bin, etc. The array
            starts at index_ct_dd.
        
---------------------------------
Function: luminosity_distance(self, z)
Docstring:

        luminosity_distance(z)
        
---------------------------------
Function: pk(self,double k,double z)
Docstring:

        Gives the total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z (will be non linear if requested to Class, linear otherwise)

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        
---------------------------------
Function: pk_cb(self,double k,double z)
Docstring:

        Gives the cdm+b pk (in Mpc**3) for a given k (in 1/Mpc) and z (will be non linear if requested to Class, linear otherwise)

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        
---------------------------------
Function: pk_lin(self,double k,double z)
Docstring:

        Gives the linear total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        
---------------------------------
Function: pk_cb_lin(self,double k,double z)
Docstring:

        Gives the linear cdm+b pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that output contains `mPk`,
            because otherwise a segfault will occur

        
---------------------------------
Function: pk_numerical_nw(self,double k,double z)
Docstring:

        Gives the nowiggle (smoothed) linear total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that `numerical_nowiggle` was set to `yes`,
            because otherwise a segfault will occur

        
---------------------------------
Function: pk_analytic_nw(self,double k)
Docstring:

        Gives the linear total matter pk (in Mpc**3) for a given k (in 1/Mpc) and z

        .. note::

            there is an additional check that `analytic_nowiggle` was set to `yes`,
            because otherwise a segfault will occur

        
---------------------------------
Function: get_pk(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size)
Docstring:
 Fast function to get the power spectrum on a k and z array 
---------------------------------
Function: get_pk_cb(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size)
Docstring:
 Fast function to get the power spectrum on a k and z array 
---------------------------------
Function: get_pk_lin(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size)
Docstring:
 Fast function to get the linear power spectrum on a k and z array 
---------------------------------
Function: get_pk_cb_lin(self, np.ndarray[DTYPE_t,ndim=3] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, int mu_size)
Docstring:
 Fast function to get the linear power spectrum on a k and z array 
---------------------------------
Function: get_pk_all(self, k, z, nonlinear = True, cdmbar = False, z_axis_in_k_arr = 0, interpolation_kind='cubic')
Docstring:
 General function to get the P(k,z) for ARBITRARY shapes of k,z
            Additionally, it includes the functionality of selecting wether to use the non-linear parts or not,
            and wether to use the cdm baryon power spectrum only
            For Multi-Dimensional k-arrays, it assumes that one of the dimensions is the z-axis
            This is handled by the z_axis_in_k_arr integer, as described in the source code 
---------------------------------
Function: get_pk_and_k_and_z(self, nonlinear=True, only_clustering_species = False, h_units=False)
Docstring:

        Returns a grid of matter power spectrum values and the z and k
        at which it has been fully computed. Useful for creating interpolators.

        Parameters
        ----------
        nonlinear : bool
                Whether the returned power spectrum values are linear or non-linear (default)
        only_clustering_species : bool
                Whether the returned power spectrum is for galaxy clustering and excludes massive neutrinos, or always includes everything (default)
        h_units : bool
                Whether the units of k in output are h/Mpc or 1/Mpc (default)

        Returns
        -------
        pk : grid of power spectrum values, pk[index_k,index_z]
        k : vector of k values, k[index_k] (in units of 1/Mpc by default, or h/Mpc when setting h_units to True)
        z : vector of z values, z[index_z]
        
---------------------------------
Function: get_transfer_and_k_and_z(self, output_format='class', h_units=False)
Docstring:

        Returns a dictionary of grids of density and/or velocity transfer function values and the z and k at which it has been fully computed.
        Useful for creating interpolators.
        When setting CLASS input parameters, include at least one of 'dTk' (for density transfer functions) or 'vTk' (for velocity transfer functions).
        Following the default output_format='class', all transfer functions will be normalised to 'curvature R=1' at initial time
        (and not 'curvature R = -1/k^2' like in CAMB).
        You may switch to output_format='camb' for the CAMB definition and normalisation of transfer functions.
        (Then, 'dTk' must be in the input: the CAMB format only outputs density transfer functions).
        When sticking to output_format='class', you also get the newtonian metric fluctuations phi and psi.
        If you set the CLASS input parameter 'extra_metric_transfer_functions' to 'yes',
        you get additional metric fluctuations in the synchronous and N-body gauges.

        Parameters
        ----------
        output_format  : ('class' or 'camb')
                Format transfer functions according to CLASS (default) or CAMB
        h_units : bool
                Whether the units of k in output are h/Mpc or 1/Mpc (default)

        Returns
        -------
        tk : dictionary containing all transfer functions.
                For instance, the grid of values of 'd_c' (= delta_cdm) is available in tk['d_c']
                All these grids have indices [index_k,index,z], for instance tk['d_c'][index_k,index,z]
        k : vector of k values (in units of 1/Mpc by default, or h/Mpc when setting h_units to True)
        z : vector of z values
        
---------------------------------
Function: get_Weyl_pk_and_k_and_z(self, nonlinear=False, h_units=False)
Docstring:

        Returns a grid of Weyl potential (phi+psi) power spectrum values and the z and k
        at which it has been fully computed. Useful for creating interpolators.
        Note that this function just calls get_pk_and_k_and_z and corrects the output
        by the ratio of transfer functions [(phi+psi)/d_m]^2.

        Parameters
        ----------
        nonlinear : bool
                Whether the returned power spectrum values are linear or non-linear (default)
        h_units : bool
                Whether the units of k in output are h/Mpc or 1/Mpc (default)

        Returns
        -------
        Weyl_pk : grid of Weyl potential (phi+psi) spectrum values, Weyl_pk[index_k,index_z]
        k : vector of k values, k[index_k] (in units of 1/Mpc by default, or h/Mpc when setting h_units to True)
        z : vector of z values, z[index_z]
        
---------------------------------
Function: sigma(self,R,z, h_units = False)
Docstring:

        Gives sigma (total matter) for a given R and z
        (R is the radius in units of Mpc, so if R=8/h this will be the usual sigma8(z).
         This is unless h_units is set to true, in which case R is the radius in units of Mpc/h,
         and R=8 corresponds to sigma8(z))

        .. note::

            there is an additional check to verify whether output contains `mPk`,
            and whether k_max > ...
            because otherwise a segfault will occur

        
---------------------------------
Function: sigma_cb(self,double R,double z, h_units = False)
Docstring:

        Gives sigma (cdm+b) for a given R and z
        (R is the radius in units of Mpc, so if R=8/h this will be the usual sigma8(z)
         This is unless h_units is set to true, in which case R is the radius in units of Mpc/h,
         and R=8 corresponds to sigma8(z))

        .. note::

            there is an additional check to verify whether output contains `mPk`,
            and whether k_max > ...
            because otherwise a segfault will occur

        
---------------------------------
Function: pk_tilt(self,double k,double z)
Docstring:

        Gives effective logarithmic slope of P_L(k,z) (total matter) for a given k and z
        (k is the wavenumber in units of 1/Mpc, z is the redshift, the output is dimensionless)

        .. note::

            there is an additional check to verify whether output contains `mPk` and whether k is in the right range

        
---------------------------------
Function: angular_distance(self, z)
Docstring:

        angular_distance(z)

        Return the angular diameter distance (exactly, the quantity defined by Class
        as index_bg_ang_distance in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: angular_distance_from_to(self, z1, z2)
Docstring:

        angular_distance_from_to(z)

        Return the angular diameter distance of object at z2 as seen by observer at z1,
        that is, sin_K((chi2-chi1)*np.sqrt(|k|))/np.sqrt(|k|)/(1+z2).
        If z1>z2 returns zero.

        Parameters
        ----------
        z1 : float
                Observer redshift
        z2 : float
                Source redshift

        Returns
        -------
        d_A(z1,z2) in Mpc
        
---------------------------------
Function: comoving_distance(self, z)
Docstring:

        comoving_distance(z)

        Return the comoving distance

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: scale_independent_growth_factor(self, z)
Docstring:

        scale_independent_growth_factor(z)

        Return the scale invariant growth factor D(a) for CDM perturbations
        (exactly, the quantity defined by Class as index_bg_D in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: scale_independent_growth_factor_f(self, z)
Docstring:

        scale_independent_growth_factor_f(z)

        Return the scale independent growth factor f(z)=d ln D / d ln a for CDM perturbations
        (exactly, the quantity defined by Class as index_bg_f in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: scale_dependent_growth_factor_f(self, k, z, h_units=False, nonlinear=False, Nz=20)
Docstring:

        scale_dependent_growth_factor_f(k,z)

        Return the scale dependent growth factor
        f(z)= 1/2 * [d ln P(k,a) / d ln a]
            = - 0.5 * (1+z) * [d ln P(k,z) / d z]
        where P(k,z) is the total matter power spectrum

        Parameters
        ----------
        z : float
                Desired redshift
        k : float
                Desired wavenumber in 1/Mpc (if h_units=False) or h/Mpc (if h_units=True)
        
---------------------------------
Function: scale_dependent_growth_factor_f_cb(self, k, z, h_units=False, nonlinear=False, Nz=20)
Docstring:

        scale_dependent_growth_factor_f_cb(k,z)

        Return the scale dependent growth factor calculated from CDM+baryon power spectrum P_cb(k,z)
        f(z)= 1/2 * [d ln P_cb(k,a) / d ln a]
            = - 0.5 * (1+z) * [d ln P_cb(k,z) / d z]


        Parameters
        ----------
        z : float
                Desired redshift
        k : float
                Desired wavenumber in 1/Mpc (if h_units=False) or h/Mpc (if h_units=True)
        
---------------------------------
Function: scale_independent_f_sigma8(self, z)
Docstring:

        scale_independent_f_sigma8(z)

        Return the scale independent growth factor f(z) multiplied by sigma8(z)

        Parameters
        ----------
        z : float
                Desired redshift

        Returns
        -------
        f(z)*sigma8(z) (dimensionless)
        
---------------------------------
Function: effective_f_sigma8(self, z, z_step=0.1)
Docstring:

        effective_f_sigma8(z)

        Returns the time derivative of sigma8(z) computed as (d sigma8/d ln a)

        Parameters
        ----------
        z : float
                Desired redshift
        z_step : float
                Default step used for the numerical two-sided derivative. For z < z_step the step is reduced progressively down to z_step/10 while sticking to a double-sided derivative. For z< z_step/10 a single-sided derivative is used instead.

        Returns
        -------
        (d ln sigma8/d ln a)(z) (dimensionless)
        
---------------------------------
Function: effective_f_sigma8_spline(self, z, Nz=20)
Docstring:

        effective_f_sigma8_spline(z)

        Returns the time derivative of sigma8(z) computed as (d sigma8/d ln a)

        Parameters
        ----------
        z : float
                Desired redshift
        Nz : integer
                Number of values used to spline sigma8(z) in the range [z-0.1,z+0.1]

        Returns
        -------
        (d ln sigma8/d ln a)(z) (dimensionless)
        
---------------------------------
Function: z_of_tau(self, tau)
Docstring:

        Redshift corresponding to a given conformal time.

        Parameters
        ----------
        tau : float
                Conformal time
        
---------------------------------
Function: Hubble(self, z)
Docstring:

        Hubble(z)

        Return the Hubble rate (exactly, the quantity defined by Class as index_bg_H
        in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: Om_m(self, z)
Docstring:

        Omega_m(z)

        Return the matter density fraction (exactly, the quantity defined by Class as index_bg_Omega_m
        in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: Om_b(self, z)
Docstring:

        Omega_b(z)

        Return the baryon density fraction (exactly, the ratio of quantities defined by Class as
        index_bg_rho_b and index_bg_rho_crit in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: Om_cdm(self, z)
Docstring:

        Omega_cdm(z)

        Return the cdm density fraction (exactly, the ratio of quantities defined by Class as
        index_bg_rho_cdm and index_bg_rho_crit in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: Om_ncdm(self, z)
Docstring:

        Omega_ncdm(z)

        Return the ncdm density fraction (exactly, the ratio of quantities defined by Class as
        Sum_m [ index_bg_rho_ncdm1 + n ], with n=0...N_ncdm-1, and index_bg_rho_crit in the background module)

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: ionization_fraction(self, z)
Docstring:

        ionization_fraction(z)

        Return the ionization fraction for a given redshift z

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: baryon_temperature(self, z)
Docstring:

        baryon_temperature(z)

        Give the baryon temperature for a given redshift z

        Parameters
        ----------
        z : float
                Desired redshift
        
---------------------------------
Function: T_cmb(self)
Docstring:

        Return the CMB temperature
        
---------------------------------
Function: Omega0_m(self)
Docstring:

        Return the sum of Omega0 for all non-relativistic components
        
---------------------------------
Function: get_background(self)
Docstring:

        Return an array of the background quantities at all times.

        Parameters
        ----------

        Returns
        -------
        background : dictionary containing background.
        
---------------------------------
Function: get_thermodynamics(self)
Docstring:

        Return the thermodynamics quantities.

        Returns
        -------
        thermodynamics : dictionary containing thermodynamics.
        
---------------------------------
Function: get_primordial(self)
Docstring:

        Return the primordial scalar and/or tensor spectrum depending on 'modes'.
        'output' must be set to something, e.g. 'tCl'.

        Returns
        -------
        primordial : dictionary containing k-vector and primordial scalar and tensor P(k).
        
---------------------------------
Function: get_perturbations(self, return_copy=True)
Docstring:

        Return scalar, vector and/or tensor perturbations as arrays for requested
        k-values.

        .. note::

            you need to specify both 'k_output_values', and have some
            perturbations computed, for instance by setting 'output' to 'tCl'.

            Do not enable 'return_copy=False' unless you know exactly what you are doing.
            This will mean that you get access to the direct C pointers inside CLASS.
            That also means that if class is deallocated,
            your perturbations array will become invalid. Beware!

        Returns
        -------
        perturbations : dict of array of dicts
                perturbations['scalar'] is an array of length 'k_output_values' of
                dictionary containing scalar perturbations.
                Similar for perturbations['vector'] and perturbations['tensor'].
        
---------------------------------
Function: get_transfer(self, z=0., output_format='class')
Docstring:

        Return the density and/or velocity transfer functions for all initial
        conditions today. You must include 'mTk' and/or 'vCTk' in the list of
        'output'. The transfer functions can also be computed at higher redshift z
        provided that 'z_pk' has been set and that 0<z<z_pk.

        Parameters
        ----------
        z  : redshift (default = 0)
        output_format  : ('class' or 'camb') Format transfer functions according to
                         CLASS convention (default) or CAMB convention.

        Returns
        -------
        tk : dictionary containing transfer functions.
        
---------------------------------
Function: get_current_derived_parameters(self, names)
Docstring:

        get_current_derived_parameters(names)

        Return a dictionary containing an entry for all the names defined in the
        input list.

        Parameters
        ----------
        names : list
                Derived parameters that can be asked from Monte Python, or
                elsewhere.

        Returns
        -------
        derived : dict

        .. warning::

            This method used to take as an argument directly the data class from
            Monte Python. To maintain compatibility with this old feature, a
            check is performed to verify that names is indeed a list. If not, it
            returns a TypeError. The old version of this function, when asked
            with the new argument, will raise an AttributeError.

        
---------------------------------
Function: nonlinear_scale(self, np.ndarray[DTYPE_t,ndim=1] z, int z_size)
Docstring:

        nonlinear_scale(z, z_size)

        Return the nonlinear scale for all the redshift specified in z, of size
        z_size

        Parameters
        ----------
        z : numpy array
                Array of requested redshifts
        z_size : int
                Size of the redshift array
        
---------------------------------
Function: nonlinear_scale_cb(self, np.ndarray[DTYPE_t,ndim=1] z, int z_size)
Docstring:


make        nonlinear_scale_cb(z, z_size)

        Return the nonlinear scale for all the redshift specified in z, of size

        z_size

        Parameters
        ----------
        z : numpy array
                Array of requested redshifts
        z_size : int
                Size of the redshift array
        
---------------------------------
Function: __call__(self, ctx)
Docstring:

        Function to interface with CosmoHammer

        Parameters
        ----------
        ctx : context
                Contains several dictionaries storing data and cosmological
                information

        
---------------------------------
Function: get_pk_array(self, np.ndarray[DTYPE_t,ndim=1] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, nonlinear)
Docstring:
 Fast function to get the power spectrum on a k and z array 
---------------------------------
Function: get_pk_cb_array(self, np.ndarray[DTYPE_t,ndim=1] k, np.ndarray[DTYPE_t,ndim=1] z, int k_size, int z_size, nonlinear)
Docstring:
 Fast function to get the power spectrum on a k and z array 
---------------------------------
Function: Omega0_k(self)
Docstring:
 Curvature contribution 
---------------------------------
Function: get_sources(self)
Docstring:

        Return the source functions for all k, tau in the grid.

        Returns
        -------
        sources : dictionary containing source functions.
        k_array : numpy array containing k values.
        tau_array: numpy array containing tau values.
        
---------------------------------