File size: 22,565 Bytes
bc65052 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 |
#!/usr/bin/env python
"""
.. module:: CPU
:synopsis: CPU, a CLASS Plotting Utility
.. moduleauthor:: Benjamin Audren <benjamin.audren@gmail.com>
.. credits:: Benjamin Audren, Jesus Torrado
.. version:: 2.0
This is a small python program aimed to gain time when comparing two spectra,
e.g. from CAMB and CLASS, or a non-linear spectrum to a linear one.
It is designed to be used in a command line fashion, not being restricted to
your CLASS directory, though it recognizes mainly CLASS output format. Far from
perfect, or complete, it could use any suggestion for enhancing it,
just to avoid losing time on useless matters for others.
Be warned that, when comparing with other format, the following is assumed:
there are no empty line (especially at the end of file). Gnuplot comment lines
(starting with a # are allowed). This issue will cause a non-very descriptive
error in CPU, any suggestion for testing it is welcome.
Example of use:
- To superimpose two different spectra and see their global shape :
python CPU.py output/lcdm_z2_pk.dat output/lncdm_z2_pk.dat
- To see in details their ratio:
python CPU.py output/lcdm_z2_pk.dat output/lncdm_z2_pk.dat -r
The "PlanckScale" is taken with permission from Jesus Torrado's:
cosmo_mini_toolbox, available under GPLv3 at
https://github.com/JesusTorrado/cosmo_mini_toolbox
"""
from __future__ import unicode_literals, print_function
# System imports
import os
import sys
import argparse
# Numerics
import numpy as np
from numpy import ma
from scipy.interpolate import InterpolatedUnivariateSpline
from math import floor
# Plotting
import matplotlib.pyplot as plt
from matplotlib import scale as mscale
from matplotlib.transforms import Transform
from matplotlib.ticker import FixedLocator
def CPU_parser():
parser = argparse.ArgumentParser(
description=(
'CPU, a CLASS Plotting Utility, specify wether you want\n'
'to superimpose, or plot the ratio of different files.'),
epilog=(
'A standard usage would be, for instance:\n'
'python CPU.py output/test_pk.dat output/test_pk_nl_density.dat'
' -r\npython CPU.py output/wmap_cl.dat output/planck_cl.dat'),
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
'files', type=str, nargs='*', help='Files to plot')
parser.add_argument('-r', '--ratio', dest='ratio', action='store_true',
help='Plot the ratio of the spectra')
parser.add_argument('-y', '--y-axis', dest='y_axis', nargs='+',
help='specify the fields you want to plot.')
parser.add_argument('-x', '--x-axis', dest='x_axis', type=str,
help='specify the field to be used on the x-axis')
parser.add_argument('--scale', type=str,
choices=['lin', 'loglog', 'loglin', 'george'],
help='Specify the scale to use for the plot')
parser.add_argument('--xlim', dest='xlim', nargs='+', type=float,
default=[], help='Specify the x range')
parser.add_argument('--ylim', dest='ylim', nargs='+', type=float,
default=[], help='Specify the y range')
parser.add_argument(
'-p, --print',
dest='printfile', default='',
help=('print the graph directly in a file. If no name is specified, it'
'uses the name of the first input file'))
parser.add_argument(
'--repeat',
dest='repeat', action='store_true', default=False,
help='repeat the step for all redshifts with same base name')
return parser
def plot_CLASS_output(files, x_axis, y_axis, ratio=False, printing='',
output_name='', extension='', x_variable='',
scale='lin', xlim=[], ylim=[]):
"""
Load the data to numpy arrays, write all the commands for plotting to a
Python script for further refinment, and display them.
Inspired heavily by the matlab version by Thomas Tram
Parameters
----------
files : list
List of files to plot
x-axis : string
name of the column to use as the x coordinate
y-axis : list, str
List of items to plot, which should match the way they appear in the
file, for instance: ['TT', 'BB]
Keyword Arguments
-----------------
ratio : bool
If set to yes, plots the ratio of the files, taking as a reference the
first one
output_name : str
Specify a different name for the produced figure (by default, it takes
the name of the first file, and replace the .dat by .pdf)
extension : str
"""
# Define the python script name, and the pdf path
python_script_path = os.path.splitext(files[0])[0]+'.py'
# The variable text will contain all the lines to be printed in the end to
# the python script path, joined with newline characters. Beware of the
# indentation.
text = ['import matplotlib.pyplot as plt',
'import numpy as np',
'import itertools', '']
# Load all the graphs
data = []
for data_file in files:
data.append(np.loadtxt(data_file))
# Create the full_path_files list, that contains the absolute path, so that
# the future python script can import them directly.
full_path_files = [os.path.abspath(elem) for elem in files]
text += ['files = %s' % full_path_files]
text += ['data = []',
'for data_file in files:',
' data.append(np.loadtxt(data_file))']
# Recover the base name of the files, everything before the dot
roots = [elem.split(os.path.sep)[-1].split('.')[0] for elem in files]
text += ['roots = [%s]' % ', '.join(["'%s'" % root for root in roots])]
# Create the figure and ax objects
fig, ax = plt.subplots()
text += ['', 'fig, ax = plt.subplots()']
# if ratio is not set, then simply plot them all
original_y_axis = y_axis
legend = []
if not ratio:
for index, curve in enumerate(data):
# Recover the number of columns in the first file, as well as their
# title.
num_columns, names, tex_names = extract_headers(files[index])
text += ['', 'index, curve = %i, data[%i]' % (index, index)]
# Check if everything is in order
if num_columns == 2:
y_axis = [names[1]]
elif num_columns > 2:
# in case y_axis was only a string, cast it to a list
if isinstance(original_y_axis, str):
y_axis = [original_y_axis]
else:
y_axis = original_y_axis
# Store the selected text and tex_names to the script
selected = []
for elem in y_axis:
selected.extend(
[name for name in names if name.find(elem) != -1 and
name not in selected])
if not y_axis:
selected = names[1:]
y_axis = selected
# Decide for the x_axis, by default the index will be set to zero
x_index = 0
if x_axis:
for index_name, name in enumerate(names):
if name.find(x_axis) != -1:
x_index = index_name
break
# Store to text
text += ['y_axis = %s' % selected]
text += ['tex_names = %s' % [elem for (elem, name) in
zip(tex_names, names) if name in selected]]
text += ["x_axis = '%s'" % tex_names[x_index]]
text += ["ylim = %s" % ylim]
text += ["xlim = %s" % xlim]
for selec in y_axis:
index_selec = names.index(selec)
plot_line = 'ax.'
if scale == 'lin':
plot_line += 'plot(curve[:, %i], curve[:, %i])' % (
x_index, index_selec)
ax.plot(curve[:, x_index], curve[:, index_selec])
elif scale == 'loglog':
plot_line += 'loglog(curve[:, %i], abs(curve[:, %i]))' % (
x_index, index_selec)
ax.loglog(curve[:, x_index], abs(curve[:, index_selec]))
elif scale == 'loglin':
plot_line += 'semilogx(curve[:, %i], curve[:, %i])' % (
x_index, index_selec)
ax.semilogx(curve[:, x_index], curve[:, index_selec])
elif scale == 'george':
plot_line += 'plot(curve[:, %i], curve[:, %i])' % (
x_index, index_selec)
ax.plot(curve[:, x_index], curve[:, index_selec])
ax.set_xscale('planck')
text += [plot_line]
legend.extend([roots[index]+': '+elem for elem in y_axis])
ax.legend(legend, loc='best')
text += ["",
"ax.legend([root+': '+elem for (root, elem) in",
" itertools.product(roots, y_axis)], loc='best')",
""]
else:
ref = data[0]
num_columns, ref_curve_names, ref_tex_names = extract_headers(files[0])
# Check if everything is in order
if num_columns == 2:
y_axis_ref = [ref_curve_names[1]]
elif num_columns > 2:
# in case y_axis was only a string, cast it to a list
if isinstance(original_y_axis, str):
y_axis_ref = [original_y_axis]
else:
y_axis_ref = original_y_axis
# Store the selected text and tex_names to the script
selected = []
for elem in y_axis_ref:
selected.extend([name for name in ref_curve_names if name.find(elem) != -1 and
name not in selected])
y_axis_ref = selected
# Decide for the x_axis, by default the index will be set to zero
x_index_ref = 0
if x_axis:
for index_name, name in enumerate(ref_curve_names):
if name.find(x_axis) != -1:
x_index_ref = index_name
break
for idx in range(1, len(data)):
current = data[idx]
num_columns, names, tex_names = extract_headers(files[idx])
# Check if everything is in order
if num_columns == 2:
y_axis = [names[1]]
elif num_columns > 2:
# in case y_axis was only a string, cast it to a list
if isinstance(original_y_axis, str):
y_axis = [original_y_axis]
else:
y_axis = original_y_axis
# Store the selected text and tex_names to the script
selected = []
for elem in y_axis:
selected.extend([name for name in names if name.find(elem) != -1 and
name not in selected])
y_axis = selected
text += ['y_axis = %s' % selected]
text += ['tex_names = %s' % [elem for (elem, name) in
zip(tex_names, names) if name in selected]]
# Decide for the x_axis, by default the index will be set to zero
x_index = 0
if x_axis:
for index_name, name in enumerate(names):
if name.find(x_axis) != -1:
x_index = index_name
break
text += ["x_axis = '%s'" % tex_names[x_index]]
for selec in y_axis:
# Do the interpolation
axis = ref[:, x_index_ref]
reference = ref[:, ref_curve_names.index(selec)]
#plt.loglog(current[:, x_index], current[:, names.index(selec)])
#plt.show()
#interpolated = splrep(current[:, x_index],
#current[:, names.index(selec)])
interpolated = InterpolatedUnivariateSpline(current[:, x_index],
current[:, names.index(selec)])
if scale == 'lin':
#ax.plot(axis, splev(ref[:, x_index_ref],
#interpolated)/reference-1)
ax.plot(axis, interpolated(ref[:, x_index_ref])/reference-1)
elif scale == 'loglin':
#ax.semilogx(axis, splev(ref[:, x_index_ref],
#interpolated)/reference-1)
ax.semilogx(axis, interpolated(ref[:, x_index_ref])/reference-1)
elif scale == 'loglog':
raise InputError(
"loglog plot is not available for ratios")
if 'TT' in names:
ax.set_xlabel('$\ell$', fontsize=16)
text += ["ax.set_xlabel('$\ell$', fontsize=16)"]
elif 'P' in names:
ax.set_xlabel('$k$ [$h$/Mpc]', fontsize=16)
text += ["ax.set_xlabel('$k$ [$h$/Mpc]', fontsize=16)"]
else:
ax.set_xlabel(tex_names[x_index], fontsize=16)
text += ["ax.set_xlabel('%s', fontsize=16)" % tex_names[x_index]]
if xlim:
if len(xlim) > 1:
ax.set_xlim(xlim)
text += ["ax.set_xlim(xlim)"]
else:
ax.set_xlim(xlim[0])
text += ["ax.set_xlim(xlim[0])"]
ax.set_ylim()
text += ["ax.set_ylim()"]
if ylim:
if len(ylim) > 1:
ax.set_ylim(ylim)
text += ["ax.set_ylim(ylim)"]
else:
ax.set_ylim(ylim[0])
text += ["ax.set_ylim(ylim[0])"]
text += ['plt.show()']
plt.show()
# If the use wants to print the figure to a file
if printing:
fig.savefig(printing)
text += ["fig.savefig('%s')" % printing]
# Write to the python file all the issued commands. You can then reproduce
# the plot by running "python output/something_cl.dat.py"
with open(python_script_path, 'w') as python_script:
print('Creating a python script to reproduce the figure')
print('--> stored in %s' % python_script_path)
python_script.write('\n'.join(text))
# If the use wants to print the figure to a file
if printing:
fig.savefig(printing)
class FormatError(Exception):
"""Format not recognised"""
pass
class TypeError(Exception):
"""Spectrum type not recognised"""
pass
class NumberOfFilesError(Exception):
"""Invalid number of files"""
pass
class InputError(Exception):
"""Incompatible input requirements"""
pass
def replace_scale(string):
"""
This assumes that the string starts with "(.)", which will be replaced by
(8piG/3)
>>> print replace_scale('(.)toto')
>>> '(8\\pi G/3)toto'
"""
string_list = list(string)
string_list.pop(1)
string_list[1:1] = list('8\\pi G/3')
return ''.join(string_list)
def process_long_names(long_names):
"""
Given the names extracted from the header, return two arrays, one with the
short version, and one tex version
>>> names, tex_names = process_long_names(['(.)toto', 'proper time [Gyr]'])
>>> print names
>>> ['toto', 'proper time']
>>> print tex_names
>>> ['(8\\pi G/3)toto, 'proper time [Gyr]']
"""
names = []
tex_names = []
# First pass, to remove the leading scales
for name in long_names:
# This can happen in the background file
if name.startswith('(.)', 0):
temp_name = name[3:]
names.append(temp_name)
tex_names.append(replace_scale(name))
# Otherwise, we simply
else:
names.append(name)
tex_names.append(name)
# Finally, remove any extra spacing
names = [''.join(elem.split()) for elem in names]
return names, tex_names
def extract_headers(header_path):
with open(header_path, 'r') as header_file:
header = [line for line in header_file if line[0] == '#']
header = header[-1]
# Count the number of columns in the file, and recover their name. Thanks
# Thomas Tram for the trick
indices = [i+1 for i in range(len(header)) if
header.startswith(':', i)]
num_columns = len(indices)
long_names = [header[indices[i]:indices[(i+1)]-3].strip() if i < num_columns-1
else header[indices[i]:].strip()
for i in range(num_columns)]
# Process long_names further to handle special cases, and extract names,
# which will correspond to the tags specified in "y_axis".
names, tex_names = process_long_names(long_names)
return num_columns, names, tex_names
def main():
print('~~~ Running CPU, a CLASS Plotting Utility ~~~')
parser = CPU_parser()
# Parse the command line arguments
args = parser.parse_args()
# if there are no argument in the input, print usage
if len(args.files) == 0:
parser.print_usage()
return
# if the first file name contains cl or pk, infer the type of desired
# spectrum
if not args.y_axis:
if args.files[0].rfind('cl') != -1:
scale = 'loglog'
elif args.files[0].rfind('pk') != -1:
scale = 'loglog'
else:
scale = 'lin'
args.y_axis = []
else:
scale = ''
if not args.scale:
if scale:
args.scale = scale
else:
args.scale = 'lin'
# Remove extra spacing in the y_axis list
args.y_axis = [''.join(elem.split()) for elem in args.y_axis]
# If ratio is asked, but only one file was passed in argument, politely
# complain
if args.ratio:
if len(args.files) < 2:
raise NumberOfFilesError(
"If you want me to compute a ratio between two files, "
"I strongly encourage you to give me at least two of them.")
# actual plotting. By default, a simple superposition of the graph is
# performed. If asked to be divided, the ratio is shown - whether a need
# for interpolation arises or not.
if args.ratio and args.scale == 'loglog':
print("Defaulting to loglin scale")
args.scale = 'loglin'
plot_CLASS_output(args.files, args.x_axis, args.y_axis,
ratio=args.ratio, printing=args.printfile,
scale=args.scale, xlim=args.xlim, ylim=args.ylim)
# Helper code from cosmo_mini_toolbox, by Jesus Torrado, available fully at
# https://github.com/JesusTorrado/cosmo_mini_toolbox, to use the log then
# linear scale for the multipole axis when plotting Cl.
nonpos = "mask"
change = 50.0
factor = 500.
def _mask_nonpos(a):
"""
Return a Numpy masked array where all non-positive 1 are
masked. If there are no non-positive, the original array
is returned.
"""
mask = a <= 0.0
if mask.any():
return ma.MaskedArray(a, mask=mask)
return a
def _clip_smaller_than_one(a):
a[a <= 0.0] = 1e-300
return a
class PlanckScale(mscale.ScaleBase):
"""
Scale used by the Planck collaboration to plot Temperature power spectra:
base-10 logarithmic up to l=50, and linear from there on.
Care is taken so non-positive values are not plotted.
"""
name = 'planck'
def __init__(self, axis, **kwargs):
pass
def set_default_locators_and_formatters(self, axis):
axis.set_major_locator(
FixedLocator(
np.concatenate((np.array([2, 10, change]),
np.arange(500, 2500, 500)))))
axis.set_minor_locator(
FixedLocator(
np.concatenate((np.arange(2, 10),
np.arange(10, 50, 10),
np.arange(floor(change/100), 2500, 100)))))
def get_transform(self):
"""
Return a :class:`~matplotlib.transforms.Transform` instance
appropriate for the given logarithm base.
"""
return self.PlanckTransform(nonpos)
def limit_range_for_scale(self, vmin, vmax, minpos):
"""
Limit the domain to positive values.
"""
return (vmin <= 0.0 and minpos or vmin,
vmax <= 0.0 and minpos or vmax)
class PlanckTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def __init__(self, nonpos):
Transform.__init__(self)
if nonpos == 'mask':
self._handle_nonpos = _mask_nonpos
else:
self._handle_nonpos = _clip_nonpos
def transform_non_affine(self, a):
lower = a[np.where(a<=change)]
greater = a[np.where(a> change)]
if lower.size:
lower = self._handle_nonpos(lower * 10.0)/10.0
if isinstance(lower, ma.MaskedArray):
lower = ma.log10(lower)
else:
lower = np.log10(lower)
lower = factor*lower
if greater.size:
greater = (factor*np.log10(change) + (greater-change))
# Only low
if not(greater.size):
return lower
# Only high
if not(lower.size):
return greater
return np.concatenate((lower, greater))
def inverted(self):
return PlanckScale.InvertedPlanckTransform()
class InvertedPlanckTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
has_inverse = True
def transform_non_affine(self, a):
lower = a[np.where(a<=factor*np.log10(change))]
greater = a[np.where(a> factor*np.log10(change))]
if lower.size:
if isinstance(lower, ma.MaskedArray):
lower = ma.power(10.0, lower/float(factor))
else:
lower = np.power(10.0, lower/float(factor))
if greater.size:
greater = (greater + change - factor*np.log10(change))
# Only low
if not(greater.size):
return lower
# Only high
if not(lower.size):
return greater
return np.concatenate((lower, greater))
def inverted(self):
return PlanckTransform()
# Finished. Register the scale!
mscale.register_scale(PlanckScale)
if __name__ == '__main__':
sys.exit(main())
|