File size: 45,618 Bytes
8343c13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 |
# This script requires Streamlit and LangChain
# Install it with: pip install streamlit openai langchain langchain-openai langchain-community
import streamlit as st
import time
import json
import os
import base64
import getpass
from cryptography.fernet import Fernet
from langchain_openai import ChatOpenAI
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.documents import Document
from langchain.callbacks.base import BaseCallbackHandler
from pydantic import BaseModel, Field
from typing import Annotated
from autogen import ConversableAgent, LLMConfig, UpdateSystemMessage
import tempfile
from autogen.coding import LocalCommandLineCodeExecutor, CodeBlock
import matplotlib
matplotlib.use('Agg') # Set the backend to Agg before importing pyplot
import matplotlib.pyplot as plt
import io
from PIL import Image
import re
import subprocess
import sys
from typing import Tuple
import contextlib # for contextlib.contextmanager
# --- Helper Functions ---
def save_encrypted_key(encrypted_key, username):
"""Save encrypted key to file with username prefix"""
try:
filename = f"{username}_encrypted_api_key" if username else ".encrypted_api_key"
with open(filename, "w") as f:
f.write(encrypted_key)
return True
except Exception as e:
return False
def load_encrypted_key(username):
"""Load encrypted key from file with username prefix"""
try:
filename = f"{username}_encrypted_api_key" if username else ".encrypted_api_key"
with open(filename, "r") as f:
return f.read()
except FileNotFoundError:
return None
def read_keys_from_file(file_path):
with open(file_path, 'r') as file:
return json.load(file)
def read_prompt_from_file(path):
with open(path, 'r') as f:
return f.read()
class Response:
def __init__(self, content):
self.content = content
class Feedback(BaseModel):
grade: Annotated[int, Field(description="Score from 1 to 10")]
improvement_instructions: Annotated[str, Field(description="Advice on how to improve the reply")]
class StreamHandler(BaseCallbackHandler):
def __init__(self, container):
self.container = container
self.text = ""
def on_llm_new_token(self, token: str, **kwargs):
self.text += token
self.container.markdown(self.text + "โ")
# --- Streamlit Page Config ---
st.set_page_config(
page_title="CLAPP Agent",
page_icon="๐ค",
layout="wide",
initial_sidebar_state="auto"
)
st.markdown("# CLAPP: CLASS LLM Agent for Pair Programming")
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.image("images/CLAPP.png", width=400)
# New prompts for the swarm
Initial_Agent_Instructions = read_prompt_from_file("prompts/class_instructions.txt") # Reuse or adapt class_instructions
Review_Agent_Instructions = read_prompt_from_file("prompts/review_instructions.txt") # Adapt rating_instructions
#Typo_Agent_Instructions = read_prompt_from_file("prompts/typo_instructions.txt") # New prompt file
Formatting_Agent_Instructions = read_prompt_from_file("prompts/formatting_instructions.txt") # New prompt file
Code_Execution_Agent_Instructions = read_prompt_from_file("prompts/codeexecutor_instructions.txt") # New prompt file
# --- Initialize Session State ---
def init_session():
if "messages" not in st.session_state:
st.session_state.messages = []
if "debug" not in st.session_state:
st.session_state.debug = False
if "llm" not in st.session_state:
st.session_state.llm = None
if "llmBG" not in st.session_state:
st.session_state.llmBG = None
if "memory" not in st.session_state:
st.session_state.memory = ChatMessageHistory()
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "last_token_count" not in st.session_state:
st.session_state.last_token_count = 0
if "selected_model" not in st.session_state:
st.session_state.selected_model = "gpt-4o-mini"
if "greeted" not in st.session_state:
st.session_state.greeted = False
if "debug_messages" not in st.session_state:
st.session_state.debug_messages = []
init_session()
# --- Sidebar Configuration ---
with st.sidebar:
st.header("๐ API & Assistants")
api_key = st.text_input("1. OpenAI API Key", type="password")
username = st.text_input("2. Username (for saving your API key)", placeholder="Enter your username")
user_password = st.text_input("3. Password to encrypt/decrypt API key", type="password")
# When both API key and password are provided
if api_key and user_password:
# Create encryption key from password
key = base64.urlsafe_b64encode(user_password.ljust(32)[:32].encode())
fernet = Fernet(key)
# If this is a new API key, encrypt and save it
if "saved_api_key" not in st.session_state or api_key != st.session_state.saved_api_key:
try:
# Encrypt the API key
encrypted_key = fernet.encrypt(api_key.encode())
# Save to session state and file
st.session_state.saved_api_key = api_key
st.session_state.encrypted_key = encrypted_key.decode()
# Save to file
if save_encrypted_key(encrypted_key.decode(), username):
st.success("API key encrypted and saved! โ
")
else:
st.warning("API key encrypted but couldn't save to file! โ ๏ธ")
except Exception as e:
st.error(f"Error saving API key: {str(e)}")
# Try to load saved API key if password is provided
elif user_password and not api_key:
# Try to load from file first
encrypted_key = load_encrypted_key(username)
if encrypted_key:
try:
# Recreate encryption key
key = base64.urlsafe_b64encode(user_password.ljust(32)[:32].encode())
fernet = Fernet(key)
# Decrypt the saved key
decrypted_key = fernet.decrypt(encrypted_key.encode()).decode()
# Set the API key
api_key = decrypted_key
st.session_state.saved_api_key = api_key
st.success("API key loaded successfully! ๐")
except Exception as e:
st.error("Failed to decrypt API key. Wrong password? ๐")
else:
st.warning("No saved API key found. Please enter your API key first. ๐")
# Add clear saved key button
if st.button("๐๏ธ Clear Saved API Key"):
deleted_files = False
error_message = ""
# Try to delete username-specific file if it exists
if username:
filename = f"{username}_encrypted_api_key"
if os.path.exists(filename):
try:
os.remove(filename)
deleted_files = True
st.success(f"Deleted key file for user: {username}")
except Exception as e:
error_message += f"Error clearing {filename}: {str(e)}\n"
# Also try to delete the default file if it exists
if os.path.exists(".encrypted_api_key"):
try:
os.remove(".encrypted_api_key")
deleted_files = True
st.success("Deleted default key file")
except Exception as e:
error_message += f"Error clearing default key file: {str(e)}\n"
# Clean up session state
if "saved_api_key" in st.session_state:
del st.session_state.saved_api_key
if "encrypted_key" in st.session_state:
del st.session_state.encrypted_key
# Show appropriate message
if deleted_files:
st.info("Session cleared. Reloading page...")
time.sleep(1) # Brief pause so user can see the message
st.rerun()
elif error_message:
st.error(error_message)
else:
st.warning("No saved API keys found to delete.")
st.session_state.selected_model = st.selectbox(
"4. Choose LLM model ๐ง ",
options=["gpt-4o-mini", "gpt-4o"],
index=["gpt-4o-mini", "gpt-4o"].index(st.session_state.selected_model)
)
# Check if model has changed
if "previous_model" not in st.session_state:
st.session_state.previous_model = st.session_state.selected_model
elif st.session_state.previous_model != st.session_state.selected_model:
# Reset relevant state variables when model changes
st.session_state.vector_store = None
st.session_state.greeted = False
st.session_state.messages = []
st.session_state.memory = ChatMessageHistory()
st.session_state.previous_model = st.session_state.selected_model
st.info("Model changed! Please initialize again with the new model.")
st.write("### Response Mode")
col1, col2 = st.columns([1, 2])
with col1:
mode_is_fast = st.toggle("Fast Mode", value=True)
with col2:
if mode_is_fast:
st.caption("โจ Quick responses with good quality (recommended for most uses)")
else:
st.caption("๐ฏ Swarm mode, more refined responses (may take longer)")
if api_key:
os.environ["OPENAI_API_KEY"] = api_key
# Initialize only after model is selected
if st.button("๐ Initialize with Selected Model"):
# First initialization without streaming
st.session_state.llm = ChatOpenAI(
model_name=st.session_state.selected_model,
openai_api_key=api_key,
temperature=1.0
)
if st.session_state.vector_store is None:
embedding_status = st.empty()
embedding_status.info("๐ Processing and embedding your RAG data... This might take a moment! โณ")
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
# Get all files from class-data directory
all_docs = []
for filename in os.listdir("./class-data"):
file_path = os.path.join("./class-data", filename)
if filename.endswith('.pdf'):
# Handle PDF files
loader = PyPDFLoader(file_path)
docs = loader.load()
all_docs.extend(docs)
elif filename.endswith(('.txt', '.py', '.ini')): # Added .py extension
# Handle text and Python files
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
# Create a document with metadata
all_docs.append(Document(
page_content=text,
metadata={"source": filename, "type": "code" if filename.endswith('.py') else "text"}
))
# Split and process all documents
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
def sanitize(documents):
for doc in documents:
doc.page_content = doc.page_content.encode("utf-8", "ignore").decode("utf-8")
return documents
splits = text_splitter.split_documents(all_docs)
splits = sanitize(splits)
# Create vector store from all documents
st.session_state.vector_store = FAISS.from_documents(splits, embedding=embeddings)
embedding_status.empty() # Clear the loading message
# Initialize but don't generate welcome message yet
if not st.session_state.greeted:
# Just set the initialized flag, we'll generate the welcome message later
st.session_state.llm_initialized = True
st.rerun() # Refresh the page to show the initialized state
st.markdown("---") # Add a separator for better visual organization
# Check if CLASS is already installed
st.markdown("### ๐ง CLASS Setup")
if st.checkbox("Check CLASS installation status"):
try:
# Use sys.executable to run a simple test to see if classy can be imported
result = subprocess.run(
[sys.executable, "-c", "from classy import Class; print('CLASS successfully imported!')"],
capture_output=True,
text=True
)
if result.returncode == 0:
st.success("โ
CLASS is already installed and ready to use!")
else:
st.error("โ The 'classy' module is not installed. Please install CLASS using the button below.")
if result.stderr:
st.code(result.stderr, language="bash")
except Exception as e:
st.error(f"โ Error checking CLASS installation: {str(e)}")
# Add CLASS installation and testing buttons
st.text("If not installed, install CLASS to enable code execution and plotting")
if st.button("๐ Install CLASS"):
# Show simple initial message
status_placeholder = st.empty()
status_placeholder.info("Installing CLASS... This could take a few minutes.")
try:
# Get the path to install_classy.sh
install_script_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'install_classy.sh')
# Make the script executable
os.chmod(install_script_path, 0o755)
# Run the installation script with shell=True to ensure proper execution
process = subprocess.Popen(
[install_script_path],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
shell=True,
cwd=os.path.dirname(os.path.abspath(__file__))
)
# Create a placeholder for the current line
current_line_placeholder = st.empty()
# Collect output in the background while showing just the last line
output_text = ""
for line in iter(process.stdout.readline, ''):
output_text += line
# Update the placeholder with just the current line (real-time feedback)
if line.strip(): # Only update for non-empty lines
current_line_placeholder.info(f"Current: {line.strip()}")
# Get the final return code
return_code = process.wait()
# Clear the current line placeholder when done
current_line_placeholder.empty()
# Update status based on result
if return_code == 0:
status_placeholder.success("โ
CLASS installed successfully!")
else:
status_placeholder.error(f"โ CLASS installation failed with return code: {return_code}")
# Display the full output in an expander (not expanded by default)
with st.expander("View Full Installation Log", expanded=False):
st.code(output_text)
except Exception as e:
status_placeholder.error(f"Installation failed with exception: {str(e)}")
st.exception(e) # Show the full exception for debugging
# Add test environment button
st.text("If CLASS is installed, test the environment")
if st.button("๐งช Test CLASS"):
# Show simple initial message
status_placeholder = st.empty()
status_placeholder.info("Testing CLASS environment... This could take a moment.")
try:
# Get the path to test_classy.py
test_script_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'test_classy.py')
# Create a temporary directory for the test
with tempfile.TemporaryDirectory() as temp_dir:
# Run the test script with streaming output
process = subprocess.Popen(
[sys.executable, test_script_path],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
cwd=temp_dir
)
# Create a placeholder for the current line
current_line_placeholder = st.empty()
# Collect output in the background while showing just the last line
output_text = ""
for line in iter(process.stdout.readline, ''):
output_text += line
# Update the placeholder with just the current line (real-time feedback)
if line.strip(): # Only update for non-empty lines
current_line_placeholder.info(f"Current: {line.strip()}")
# Get the final return code
return_code = process.wait()
# Clear the current line placeholder when done
current_line_placeholder.empty()
# Update status based on result
if return_code == 0:
status_placeholder.success("โ
CLASS test completed successfully!")
else:
status_placeholder.error(f"โ CLASS test failed with return code: {return_code}")
# Check for common errors
if "ModuleNotFoundError" in output_text or "ImportError" in output_text:
st.error("โ Python module import error detected. Make sure CLASS is properly installed.")
if "CosmoSevereError" in output_text or "CosmoComputationError" in output_text:
st.error("โ CLASS computation error detected.")
# Display the full output in an expander (not expanded by default)
with st.expander("View Full Test Log", expanded=False):
st.code(output_text)
# Check if the plot was generated
plot_path = os.path.join(temp_dir, 'cmb_temperature_spectrum.png')
if os.path.exists(plot_path):
# Show the plot if it was generated
st.subheader("Generated CMB Power Spectrum")
st.image(plot_path, use_container_width=True)
else:
st.warning("โ ๏ธ No plot was generated")
except Exception as e:
status_placeholder.error(f"Test failed with exception: {str(e)}")
st.exception(e) # Show the full exception for debugging
st.markdown("---") # Add a separator for better visual organization
st.session_state.debug = st.checkbox("๐ Show Debug Info")
if st.button("๐๏ธ Reset Chat"):
st.session_state.clear()
st.rerun()
if st.session_state.last_token_count > 0:
st.markdown(f"๐งฎ **Last response token usage:** `{st.session_state.last_token_count}` tokens")
# --- Display all saved plots in sidebar ---
if "generated_plots" in st.session_state and st.session_state.generated_plots:
with st.expander("๐ Plot Gallery", expanded=False):
st.write("All plots generated during this session:")
# Use a single column layout for the sidebar
for i, plot_path in enumerate(st.session_state.generated_plots):
if os.path.exists(plot_path):
st.image(plot_path, width=250, caption=os.path.basename(plot_path))
st.markdown("---") # Add separator between plots
# --- Retrieval + Prompt Construction ---
def build_messages(context, question, system):
system_msg = SystemMessage(content=system)
human_msg = HumanMessage(content=f"Context:\n{context}\n\nQuestion:\n{question}")
return [system_msg] + st.session_state.memory.messages + [human_msg]
def build_messages_rating(context, question, answer, system):
system_msg = SystemMessage(content=system)
human_msg = HumanMessage(content=f"Context:\n{context}\n\nQuestion:\n{question}\n\nAI Answer:\n{answer}")
return [system_msg] + st.session_state.memory.messages + [human_msg]
def build_messages_refinement(context, question, answer, feedback, system):
system_msg = SystemMessage(content=system)
human_msg = HumanMessage(content=f"Context:\n{context}\n\nQuestion:\n{question}\n\nAI Answer:\n{answer}\n\nReviewer Feedback:\n{feedback}")
return [system_msg] + st.session_state.memory.messages + [human_msg]
def format_memory_messages(memory_messages):
formatted = ""
for msg in memory_messages:
role = msg.type.capitalize() # 'human' -> 'Human'
content = msg.content
formatted += f"{role}: {content}\n\n"
return formatted.strip()
def retrieve_context(question):
docs = st.session_state.vector_store.similarity_search(question, k=4)
return "\n\n".join([doc.page_content for doc in docs])
# Set up code execution environment
#temp_dir = tempfile.TemporaryDirectory()
class PlotAwareExecutor(LocalCommandLineCodeExecutor):
def __init__(self, **kwargs):
import tempfile
# Create a persistent plots directory if it doesn't exist
plots_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'plots')
os.makedirs(plots_dir, exist_ok=True)
# Still use a temp dir for code execution
temp_dir = tempfile.TemporaryDirectory()
kwargs['work_dir'] = temp_dir.name
super().__init__(**kwargs)
self._temp_dir = temp_dir
self._plots_dir = plots_dir
@contextlib.contextmanager
def _capture_output(self):
old_out, old_err = sys.stdout, sys.stderr
buf_out, buf_err = io.StringIO(), io.StringIO()
sys.stdout, sys.stderr = buf_out, buf_err
try:
yield buf_out, buf_err
finally:
sys.stdout, sys.stderr = old_out, old_err
def execute_code(self, code: str):
# 1) Extract code from markdown
match = re.search(r"```(?:python)?\n(.*?)```", code, re.DOTALL)
cleaned = match.group(1) if match else code
cleaned = cleaned.replace("plt.show()", "")
# Add timestamp for saving figures only if there's plt usage in the code
timestamp = time.strftime("%Y-%m-%d-%H-%M-%S")
plot_filename = f'plot_{timestamp}.png'
plot_path = os.path.join(self._plots_dir, plot_filename)
temp_plot_path = None
for line in cleaned.split("\n"):
if "plt.savefig" in line:
temp_plot_path = os.path.join(self._temp_dir.name, f'temporary_{timestamp}.png')
cleaned = cleaned.replace(line, f"plt.savefig('{temp_plot_path}', dpi=300)")
break
else:
# If there's a plot but no save, auto-insert save
if "plt." in cleaned:
temp_plot_path = os.path.join(self._temp_dir.name, f'temporary_{timestamp}.png')
cleaned += f"\nplt.savefig('{temp_plot_path}')"
# Create a temporary Python file to execute
temp_script_path = os.path.join(self._temp_dir.name, f'temp_script_{timestamp}.py')
with open(temp_script_path, 'w') as f:
f.write(cleaned)
full_output = ""
try:
# 2) Capture stdout using subprocess
process = subprocess.Popen(
[sys.executable, temp_script_path],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
cwd=self._temp_dir.name
)
stdout, _ = process.communicate()
# 3) Format the output
with self._capture_output() as (out_buf, err_buf):
if stdout:
out_buf.write(stdout)
stdout_text = out_buf.getvalue()
stderr_text = err_buf.getvalue()
if stdout_text:
full_output += f"STDOUT:\n{stdout_text}\n"
if stderr_text:
full_output += f"STDERR:\n{stderr_text}\n"
# Copy plot from temp to persistent location if it exists
if temp_plot_path and os.path.exists(temp_plot_path):
import shutil
shutil.copy2(temp_plot_path, plot_path)
# Initialize the plots list if it doesn't exist
if "generated_plots" not in st.session_state:
st.session_state.generated_plots = []
# Add the persistent plot path to session state
st.session_state.generated_plots.append(plot_path)
except Exception:
with self._capture_output() as (out_buf, err_buf):
import traceback
traceback.print_exc(file=sys.stderr)
full_output += f"STDERR:\n{err_buf.getvalue()}\n"
return full_output, plot_path
# Example instantiation:
executor = PlotAwareExecutor(timeout=10)
# Global agent configurations
initial_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.2, # Low temperature for consistent initial responses
api_key=api_key,
)
review_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.7, # Higher temperature for creative reviews
api_key=api_key,
response_format=Feedback
)
# typo_config = LLMConfig(
# api_type="openai",
# model=st.session_state.selected_model,
# temperature=0.1, # Very low temperature for precise code corrections
# api_key=api_key,
# )
formatting_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.3, # Moderate temperature for formatting
api_key=api_key,
)
code_execution_config = LLMConfig(
api_type="openai",
model=st.session_state.selected_model,
temperature=0.1, # Very low temperature for code execution
api_key=api_key,
)
# Global agent instances with updated system messages
initial_agent = ConversableAgent(
name="initial_agent",
system_message=f"""
{Initial_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=initial_config
)
review_agent = ConversableAgent(
name="review_agent",
system_message=f"""{Review_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=review_config
)
# typo_agent = ConversableAgent(
# name="typo_agent",
# system_message=f"""You are the typo and code correction agent. Your task is to:
# 1. Fix any typos or grammatical errors
# 2. Correct any code issues
# 3. Ensure proper formatting
# 4. Maintain the original meaning while improving clarity
# 5. Verify plots are saved to disk (not using show())
# 6. PRESERVE all code blocks exactly as they are unless there are actual errors
# 7. If no changes are needed, keep the original code blocks unchanged
# # {Typo_Agent_Instructions}""",
# # human_input_mode="NEVER",
# # llm_config=typo_config
# # )
formatting_agent = ConversableAgent(
name="formatting_agent",
system_message="""{Formatting_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=formatting_config
)
code_executor = ConversableAgent(
name="code_executor",
system_message="""{Code_Execution_Agent_Instructions}""",
human_input_mode="NEVER",
llm_config=code_execution_config,
code_execution_config={"executor": executor},
max_consecutive_auto_reply=50
)
def call_ai(context, user_input):
if mode_is_fast:
messages = build_messages(context, user_input, Initial_Agent_Instructions)
response = st.session_state.llm.invoke(messages)
return Response(content=response.content)
else:
# New Swarm Workflow for detailed mode
st.markdown("Thinking (Swarm Mode)... ")
# Format the conversation history for context
conversation_history = format_memory_messages(st.session_state.memory.messages)
# 1. Initial Agent generates the draft
st.markdown("Generating initial draft...")
chat_result_1 = initial_agent.initiate_chat(
recipient=initial_agent,
message=f"Conversation history:\n{conversation_history}\n\nContext from documents: {context}\n\nUser question: {user_input}",
max_turns=1,
summary_method="last_msg"
)
draft_answer = chat_result_1.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Initial Draft", draft_answer))
# 2. Review Agent critiques the draft
st.markdown("Reviewing draft...")
chat_result_2 = review_agent.initiate_chat(
recipient=review_agent,
message=f"Conversation history:\n{conversation_history}\n\nPlease review this draft answer:\n{draft_answer}",
max_turns=1,
summary_method="last_msg"
)
review_feedback = chat_result_2.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Review Feedback", review_feedback))
# # 3. Typo Agent corrects the draft
# st.markdown("Checking for typos...")
# chat_result_3 = typo_agent.initiate_chat(
# recipient=typo_agent,
# message=f"Original draft: {draft_answer}\n\nReview feedback: {review_feedback}",
# max_turns=1,
# summary_method="last_msg"
# )
# typo_corrected_answer = chat_result_3.summary
# if st.session_state.debug: st.text(f"Typo-Corrected Answer:\n{typo_corrected_answer}")
# 4. Formatting Agent formats the final answer
st.markdown("Formatting final answer...")
chat_result_4 = formatting_agent.initiate_chat(
recipient=formatting_agent,
message=f"""Please format this answer while preserving any code blocks:
{draft_answer}""",
max_turns=1,
summary_method="last_msg"
)
formatted_answer = chat_result_4.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Formatted Answer", formatted_answer))
# Check if the answer contains code
if "```python" in formatted_answer:
# Add a note about code execution
formatted_answer += "\n\n> ๐ก **Note**: This answer contains code. If you want to execute it, type 'execute!' in the chat."
return Response(content=formatted_answer)
else:
return Response(content=formatted_answer)
# --- Chat Input ---
user_input = st.chat_input("Type your prompt here...")
# --- Display Full Chat History ---
for message in st.session_state.messages:
with st.chat_message(message["role"]):
# Check if this message contains a plot path marker
if "PLOT_PATH:" in message["content"]:
# Split content into text and plot path
parts = message["content"].split("PLOT_PATH:")
# Display the text part
st.markdown(parts[0])
# Display each plot path
for plot_info in parts[1:]:
plot_path = plot_info.split('\n')[0].strip()
if os.path.exists(plot_path):
st.image(plot_path, width=700)
else:
st.markdown(message["content"])
# --- Process New Prompt ---
if user_input:
# Show user input immediately
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
st.session_state.memory.add_user_message(user_input)
context = retrieve_context(user_input)
# Count prompt tokens using tiktoken if needed
try:
import tiktoken
enc = tiktoken.encoding_for_model("gpt-4")
st.session_state.last_token_count = len(enc.encode(user_input))
except:
st.session_state.last_token_count = 0
# Stream assistant response
with st.chat_message("assistant"):
stream_box = st.empty()
stream_handler = StreamHandler(stream_box)
# Second initialization with streaming
st.session_state.llm = ChatOpenAI(
model_name=st.session_state.selected_model,
streaming=True,
callbacks=[stream_handler],
openai_api_key=api_key,
temperature=0.2
)
# Check if this is an execution request
if user_input.strip().lower() == "execute!":
# Find the last assistant message containing code
last_assistant_message = None
for message in reversed(st.session_state.messages):
if message["role"] == "assistant" and "```" in message["content"]:
last_assistant_message = message["content"]
break
if last_assistant_message:
st.markdown("Executing code...")
st.info("๐ Executing cleaned code...")
#chat_result = code_executor.initiate_chat(
# recipient=code_executor,
# message=f"Please execute this code:\n{last_assistant_message}",
# max_turns=1,
# summary_method="last_msg"
#)
#execution_output = chat_result.summary
execution_output, plot_path = executor.execute_code(last_assistant_message)
st.subheader("Execution Output")
st.text(execution_output) # now contains both STDOUT and STDERR
if os.path.exists(plot_path):
st.success("โ
Plot generated successfully!")
# Display the plot
#st.image(plot_path, use_container_width=True)
st.image(plot_path, width=700)
else:
st.warning("โ ๏ธ No plot was generated")
# Check for errors and iterate if needed
max_iterations = 3 # Maximum number of iterations to prevent infinite loops
current_iteration = 0
has_errors = any(error_indicator in execution_output for error_indicator in ["Traceback", "Error:", "Exception:", "TypeError:", "ValueError:", "NameError:", "SyntaxError:", "Error in Class"])
while has_errors and current_iteration < max_iterations:
current_iteration += 1
st.error(f"Previous error: {execution_output}") # Show the actual error message
st.info(f"๐ง Fixing errors (attempt {current_iteration}/{max_iterations})...")
# Get new review with error information
review_message = f"""
Previous answer had errors during execution:
{execution_output}
Please review and suggest fixes for this answer. IMPORTANT: Preserve all code blocks exactly as they are, only fix actual errors:
{last_assistant_message}
"""
chat_result_2 = review_agent.initiate_chat(
recipient=review_agent,
message=review_message,
max_turns=1,
summary_method="last_msg"
)
review_feedback = chat_result_2.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Error Review Feedback", review_feedback))
# Get corrected version
chat_result_3 = initial_agent.initiate_chat(
recipient=initial_agent,
message=f"""Original answer: {last_assistant_message}
Review feedback with error fixes: {review_feedback}
IMPORTANT: Only fix actual errors in the code blocks. Preserve all working code exactly as it is.""",
max_turns=1,
summary_method="last_msg"
)
corrected_answer = chat_result_3.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Corrected Answer", corrected_answer))
# Format the corrected answer
chat_result_4 = formatting_agent.initiate_chat(
recipient=formatting_agent,
message=f"""Please format this corrected answer while preserving all code blocks:
{corrected_answer}
""",
max_turns=1,
summary_method="last_msg"
)
formatted_answer = chat_result_4.summary
if st.session_state.debug:
st.session_state.debug_messages.append(("Formatted Corrected Answer", formatted_answer))
# Execute the corrected code
st.info("๐ Executing corrected code...")
#chat_result = code_executor.initiate_chat(
# recipient=code_executor,
# message=f"Please execute this corrected code:\n{formatted_answer}",
# max_turns=1,
# summary_method="last_msg"
#)
#execution_output = chat_result.summary
execution_output, plot_path = executor.execute_code(formatted_answer)
st.subheader("Execution Output")
st.text(execution_output) # now contains both STDOUT and STDERR
if os.path.exists(plot_path):
st.success("โ
Plot generated successfully!")
# Display the plot
st.image(plot_path, width=700)
else:
st.warning("โ ๏ธ No plot was generated")
if st.session_state.debug:
st.session_state.debug_messages.append(("Execution Output", execution_output))
# If we've reached the end of iterations and we're successful
if not has_errors or current_iteration == max_iterations:
# Add successful execution to the conversation with plot
final_answer = formatted_answer if formatted_answer else last_assistant_message
response_text = f"Execution completed successfully:\n{execution_output}\n\nThe following code was executed:\n```python\n{final_answer}\n```"
# Add plot path marker for rendering in the conversation
if os.path.exists(plot_path):
response_text += f"\n\nPLOT_PATH:{plot_path}\n"
if current_iteration > 0:
response_text = f"After {current_iteration} correction attempts: " + response_text
# Set the response variable with our constructed text that includes plot
response = Response(content=response_text)
# Update last_assistant_message with the formatted answer for next iteration
last_assistant_message = formatted_answer
has_errors = any(error_indicator in execution_output for error_indicator in ["Traceback", "Error:", "Exception:", "TypeError:", "ValueError:", "NameError:", "SyntaxError:", "Error in Class"])
if has_errors:
st.markdown("> โ ๏ธ **Note**: Some errors could not be fixed after multiple attempts. You can request changes by describing them in the chat.")
st.markdown(f"> โ Last execution message:\n{execution_output}")
response = Response(content=f"Execution completed with errors:\n{execution_output}")
else:
# Check for common error indicators in the output
if any(error_indicator in execution_output for error_indicator in ["Traceback", "Error:", "Exception:", "TypeError:", "ValueError:", "NameError:", "SyntaxError:"]):
st.markdown("> โ ๏ธ **Note**: Code execution completed but with errors. You can request changes by describing them in the chat.")
st.markdown(f"> โ Execution message:\n{execution_output}")
response = Response(content=f"Execution completed with errors:\n{execution_output}")
else:
st.markdown(f"> โ
Code executed successfully. Last execution message:\n{execution_output}")
# Display the final code that was successfully executed
with st.expander("View Successfully Executed Code", expanded=False):
st.markdown(last_assistant_message)
# Create a response message that includes the plot path
response_text = f"Execution completed successfully:\n{execution_output}\n\nThe following code was executed:\n```python\n{last_assistant_message}\n```"
# Add plot path marker for rendering in the conversation
if os.path.exists(plot_path):
response_text += f"\n\nPLOT_PATH:{plot_path}\n"
response = Response(content=response_text)
else:
response = Response(content="No code found to execute in the previous messages.")
else:
response = call_ai(context, user_input)
if not mode_is_fast:
st.markdown(response.content)
st.session_state.memory.add_ai_message(response.content)
st.session_state.messages.append({"role": "assistant", "content": response.content})
# --- Display Welcome Message (outside of sidebar) ---
# This ensures the welcome message appears in the main content area
if "llm_initialized" in st.session_state and st.session_state.llm_initialized and not st.session_state.greeted:
# Create a chat message container for the welcome message
with st.chat_message("assistant"):
# Create empty container for streaming
welcome_container = st.empty()
# Set up the streaming handler
welcome_stream_handler = StreamHandler(welcome_container)
# Initialize streaming LLM
streaming_llm = ChatOpenAI(
model_name=st.session_state.selected_model,
streaming=True,
callbacks=[welcome_stream_handler],
openai_api_key=api_key,
temperature=0.2
)
# Generate the streaming welcome message
greeting = streaming_llm.invoke([
SystemMessage(content=Initial_Agent_Instructions),
HumanMessage(content="Please greet the user and briefly explain what you can do as the CLASS code assistant.")
])
# Save the completed message to history
st.session_state.messages.append({"role": "assistant", "content": greeting.content})
st.session_state.memory.add_ai_message(greeting.content)
st.session_state.greeted = True
# --- Debug Info ---
if st.session_state.debug:
with st.sidebar.expander("๐ ๏ธ Debug Information", expanded=True):
# Create a container for debug messages
debug_container = st.container()
with debug_container:
st.markdown("### Debug Messages")
# Display all debug messages in a scrollable container
for title, message in st.session_state.debug_messages:
st.markdown(f"### {title}")
st.markdown(message)
st.markdown("---")
with st.sidebar.expander("๐ ๏ธ Context Used"):
if "context" in locals():
st.markdown(context)
else:
st.markdown("No context retrieved yet.") |