Spaces:
Runtime error
Runtime error
File size: 20,291 Bytes
a40e4e2 3b015d2 9206066 a40e4e2 9206066 3b015d2 a40e4e2 9206066 7143af7 9206066 097c210 9206066 3b015d2 a40e4e2 3b015d2 ada7876 a40e4e2 ada7876 a40e4e2 ada7876 a40e4e2 ada7876 3b015d2 ada7876 781b338 a40e4e2 ada7876 a40e4e2 ada7876 a40e4e2 ada7876 a40e4e2 9206066 a40e4e2 9206066 ada7876 9206066 3b015d2 a40e4e2 3b015d2 a40e4e2 3b015d2 a40e4e2 3b015d2 9206066 d610380 847470e d610380 66ac19a d610380 847470e 781b338 a40e4e2 ada7876 3b015d2 ada7876 690feab ada7876 a40e4e2 3b015d2 ada7876 3b015d2 ada7876 0f69fc2 ada7876 9206066 3b015d2 724e585 ada7876 3b015d2 ada7876 3b015d2 a40e4e2 ada7876 3b015d2 0f69fc2 ada7876 3b015d2 ada7876 0f69fc2 ada7876 591e531 ada7876 a40e4e2 ada7876 59741dd 66ac19a 59741dd 66ac19a 59741dd ada7876 a40e4e2 ada7876 a40e4e2 ada7876 a40e4e2 ada7876 a40e4e2 ada7876 a40e4e2 ada7876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
from __future__ import annotations
import boto3
from botocore.config import Config
from dotenv import load_dotenv
import os
import shutil
from typing import List, Tuple, TYPE_CHECKING
import uuid
import argparse
import logging
from enum import Enum
import tempfile
from pathlib import Path
import requests
import banana_dev as banana
import streamlit as st
from PIL import Image
from streamlit_image_select import image_select
import smart_open
if TYPE_CHECKING:
from io import BytesIO
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Looks for .env file in current directory to pull environment variables. Should
# not overwrite already set environment variables. Used for S3 credentials.
load_dotenv()
_S3_PATH_OUTPUT = "s3://gretel-image-synthetics-use2/data/{identifier}/{image_type}_images.zip"
_GRETEL_USERINFO_ENDPOINT = "https://api.gretel.cloud/users/me"
class UxState(str, Enum):
LOGIN_VIA_API_KEY = "login_via_api_key"
UPLOAD1 = "upload1"
UPLOAD2 = "upload2"
UPLOAD3 = "upload3"
PROMPT = "prompt"
TRAIN = "train"
FINISHED = "finished"
# Command-line arguments to control some stuff for easier local testing.
# Eventually may want to move everything into functions and have a
# if __name__ == "main" setup instead of everything inline.
parser = argparse.ArgumentParser()
parser.add_argument(
"--dry-run", action="store_true",
help="Skip sending train request to backend server.",
)
parser.add_argument(
"--train-endpoint-url", default=None,
help="URL of backend server to send train request to. If None, use hardcoded banana setup.",
)
cli_args = parser.parse_args()
def setup_session_state():
if "key" not in st.session_state:
st.session_state["key"] = uuid.uuid4().hex
if "ux_state" not in st.session_state:
st.session_state["ux_state"] = UxState.LOGIN_VIA_API_KEY
if "model_inputs" not in st.session_state:
st.session_state["model_inputs"] = None
if "concepts" not in st.session_state:
st.session_state["concepts"] = []
if "prompt_keywords" not in st.session_state:
st.session_state["prompt_keywords"] = None
if "prompt" not in st.session_state:
st.session_state["prompt"] = None
if "view" not in st.session_state:
st.session_state["view"] = False
if "user_email" not in st.session_state:
st.session_state["user_email"] = None
if "user_firstname" not in st.session_state:
st.session_state["user_firstname"] = None
if "user_verified" not in st.session_state:
st.session_state["user_verified"] = False
def bucket_parts(s3_path: str) -> Tuple[str, str]:
"""Split an S3 path into bucket and key.
Args:
s3_path: path starting with "s3:"
Returns:
Tuple of bucket and key for the path
"""
parts = s3_path.split("/")
bucket = parts[2]
key = "/".join(parts[3:])
return bucket, key
def generate_s3_get_url(s3_path: str, expiration_seconds: int) -> str:
"""Generate a presigned S3 url to read from an S3 path.
A presigned url allows anyone accessing that url to read the s3 path without
needing s3 credentials until the url expires.
Args:
s3_path: path starting with "s3:"
expiration_seconds: how long the url will be valid (does not influence
lifetime of the underlying s3 object, only the presigned url)
Returns:
The presigned url
"""
bucket, key = bucket_parts(s3_path)
s3_client = boto3.client("s3", config=Config(signature_version="s3v4", s3={"addressing_style": "path"}))
download_url = s3_client.generate_presigned_url(
"get_object",
Params={
"Bucket": bucket,
"Key": key
},
ExpiresIn=expiration_seconds
)
return download_url
def generate_s3_put_url(s3_path: str, expiration_seconds: int) -> str:
"""Generate a presigned S3 url to write to an S3 path.
A presigned url allows anyone accessing that url to write to the s3 path
without needing s3 credentials until the url expires.
Args:
s3_path: path starting with "s3:"
expiration_seconds: how long the url will be valid (does not influence
lifetime of the underlying s3 object, only the presigned url)
Returns:
The presigned url
"""
bucket, key = bucket_parts(s3_path)
s3_client = boto3.client("s3", config=Config(signature_version="s3v4", s3={"addressing_style": "path"}))
upload_url = s3_client.generate_presigned_url(
"put_object",
Params={
"Bucket": bucket,
"Key": key
},
ExpiresIn=expiration_seconds
)
return upload_url
def zip_and_upload_images(identifier: str, uploaded_files: List[BytesIO], image_type: str) -> str:
"""Save images as zip file to s3 for use in backend.
Blocks until images are processed, added to zip file, and uploaded to S3.
Args:
identifier: unique identifier for the run, used in s3 link
uploaded_files: BytesIO or UploadedFile from streamlit fileuploader
image_type: string to identify different batches of images used in the
backend model/training. Currently used values: "face", "theme"
Returns:
S3 location of zip file containing png images.
"""
with tempfile.TemporaryDirectory() as temp_dir_name:
logger.info(f"Working from temp dir to zip and upload images: {temp_dir_name}")
temp_dir = Path(temp_dir_name)
if not os.path.exists(temp_dir / identifier):
os.makedirs(temp_dir / identifier)
logger.info("Processing uploaded images")
for num, uploaded_file in enumerate(uploaded_files):
file_ = Image.open(uploaded_file).convert("RGB")
file_.save(temp_dir / identifier / f"{num}_test.png")
local_zip_filestem = str(temp_dir / f"{identifier}_{image_type}_images")
logger.info("Making zip archive")
shutil.make_archive(local_zip_filestem, "zip", temp_dir / identifier)
local_zip_filename = f"{local_zip_filestem}.zip"
logger.info("Uploading zip file to s3")
# TODO: can we define expiration when making the s3 path?
# Probably if we use the boto3 library instead of smart open
s3_path = _S3_PATH_OUTPUT.format(identifier=identifier, image_type=image_type)
with open(local_zip_filename, "rb") as fin:
with smart_open.open(s3_path, "wb") as fout:
fout.write(fin.read())
logger.info(f"Completed upload to {s3_path}")
return s3_path
def train_model(model_inputs):
# logger.info("Skipping model training since --dry-run is enabled.")
# logger.info(f"model_inputs: {model_inputs}")
# st.markdown(str(model_inputs))
# if cli_args.train_endpoint_url is None:
# Use banana backend
api_key = "03cdd72e-5c04-4207-bd6a-fd5712c1740e"
model_key = "12f50d2a-fc6a-4334-b77f-e97fcabdee65"
#st.markdown(str(model_inputs))
#print(model_inputs)
_ = banana.run(api_key, model_key, model_inputs)
# else:
# # Send request directly to specified url
# _ = requests.post(cli_args.train_endpoint_url, json=model_inputs)
def switch_ux_state(new_state: UxState):
st.session_state['ux_state'] = new_state
st.experimental_rerun()
def run_enter_api_key():
api_key_input = st.empty()
with api_key_input.form(key='user_auth_api_key'):
api_key_input = st.text_input(label='Please enter your Gretel API Key', type='password')
st.caption("Don't have a Gretel Cloud account yet? [Sign up](https://gretel.ai/signup) for free now!")
submit_button = st.form_submit_button(label='Submit')
if submit_button:
r = requests.get(_GRETEL_USERINFO_ENDPOINT, headers={'authorization': api_key_input})
if r.status_code != 200:
st.error('API key could not be verified')
return
me = r.json().get('data', {}).get('me', {})
email = me.get('email')
if email is None:
st.error('No e-mail associated with this API key')
return
st.session_state["user_email"] = email
st.session_state["user_firstname"] = me.get('firstname')
st.session_state["user_verified"] = True
switch_ux_state(UxState.UPLOAD1)
def run_upload_initial():
identifier = st.session_state["key"]
images = st.empty()
with images.form("concept_one_form"):
uploaded_files = st.file_uploader(
"Choose first concept image files", accept_multiple_files=True, type=["png", "jpg", "jpeg"]
)
st.caption(
"""
Files containing your training images (JPG, PNG, etc. size not restricted). These images contain your 'subject' that you want the trained model to embed in the output domain for later generating customized scenes beyond the training images. For best results, use images without noise or unrelated objects in the background.
"""
)
token = st.text_input("Token Name")
st.caption(
"""
The `token name` you use to describe your training images should be in the format: `a [identifier] [class noun]`, where the `[identifier]` should be a rare token. Relatively short sequences with 1-3 letters work the best (e.g. `sks`, `xjy`). `[class noun]` is a coarse class descriptor of the subject (e.g. cat, dog, watch, etc.). For example, your `token` can be: `a sks dog`, or with some extra description `a photo of a sks dog`. The trained model will learn to bind a unique identifier with your specific subject in the `instance_data`.
"""
)
class_token = st.text_input("Token Class")
st.caption(
"""
The `token class` is a description of the coarse class of your training images, in the format of `a [class noun]`, optionally with some extra description. `token_class` is used to alleviate overfitting to your customised images (the trained model should still keep the learnt prior so that it can still generate different dogs when the `[identifier]` is not in the prompt). Corresponding to the examples of the `token` above, the `token_class` can be `a dog` or `a photo of a dog`.
"""
)
concept = st.checkbox(
'Would you like to fine-tune on a second concept?',
)
submitted = st.form_submit_button(f"Upload")
if submitted:
with st.spinner('Uploading...'):
concept_information_dictionary = {
"file_path": generate_s3_get_url(zip_and_upload_images(
identifier, uploaded_files, "concept_one"), expiration_seconds=3600),
"token": token,
"class_token": class_token
}
st.session_state["concepts"].append(concept_information_dictionary)
st.success(f'Uploading {len(uploaded_files)} files done!')
if concept:
switch_ux_state(UxState.UPLOAD2)
else:
switch_ux_state(UxState.PROMPT)
def run_upload_secondary():
identifier = st.session_state["key"]
images = st.empty()
with images.form("concept_two_form"):
uploaded_files = st.file_uploader(
"Choose second concept image files", accept_multiple_files=True, type=["png", "jpg", "jpeg"]
)
st.caption(
"""
Files containing your training images (JPG, PNG, etc. size not restricted). These images contain your 'subject' that you want the trained model to embed in the output domain for later generating customized scenes beyond the training images. For best results, use images without noise or unrelated objects in the background.
"""
)
token = st.text_input("Token Name")
st.caption(
"""
The `token name` you use to describe your training images should be in the format: `a [identifier] [class noun]`, where the `[identifier]` should be a rare token. Relatively short sequences with 1-3 letters work the best (e.g. `sks`, `xjy`). `[class noun]` is a coarse class descriptor of the subject (e.g. cat, dog, watch, etc.). For example, your `token` can be: `a sks dog`, or with some extra description `a photo of a sks dog`. The trained model will learn to bind a unique identifier with your specific subject in the `instance_data`.
"""
)
class_token = st.text_input("Token Class")
st.caption(
"""
The `token class` is a description of the coarse class of your training images, in the format of `a [class noun]`, optionally with some extra description. `token_class` is used to alleviate overfitting to your customised images (the trained model should still keep the learnt prior so that it can still generate different dogs when the `[identifier]` is not in the prompt). Corresponding to the examples of the `token` above, the `token_class` can be `a dog` or `a photo of a dog`.
"""
)
next_concept = st.checkbox(
'Would you like to fine-tune on a third concept?',
)
submitted = st.form_submit_button(f"Upload")
if submitted:
with st.spinner('Uploading...'):
concept_information_dictionary = {
"file_path": generate_s3_get_url(zip_and_upload_images(
identifier, uploaded_files, "concept_two"), expiration_seconds=3600),
"token": token,
"class_token": class_token
}
st.session_state["concepts"].append(concept_information_dictionary)
st.success(f'Uploading {len(uploaded_files)} files done!')
if next_concept:
switch_ux_state(UxState.UPLOAD3)
else:
switch_ux_state(UxState.PROMPT)
def run_upload_third():
identifier = st.session_state["key"]
images = st.empty()
with images.form("concept_three_form"):
uploaded_files = st.file_uploader(
"Choose third concept image files", accept_multiple_files=True, type=["png", "jpg", "jpeg"]
)
st.caption(
"""
Files containing your training images (JPG, PNG, etc. size not restricted). These images contain your 'subject' that you want the trained model to embed in the output domain for later generating customized scenes beyond the training images. For best results, use images without noise or unrelated objects in the background.
"""
)
token = st.text_input("Token Name")
st.caption(
"""
The `token name` you use to describe your training images should be in the format: `a [identifier] [class noun]`, where the `[identifier]` should be a rare token. Relatively short sequences with 1-3 letters work the best (e.g. `sks`, `xjy`). `[class noun]` is a coarse class descriptor of the subject (e.g. cat, dog, watch, etc.). For example, your `token` can be: `a sks dog`, or with some extra description `a photo of a sks dog`. The trained model will learn to bind a unique identifier with your specific subject in the `instance_data`.
"""
)
class_token = st.text_input(f"Token Class")
st.caption(
"""
The `token class` is a description of the coarse class of your training images, in the format of `a [class noun]`, optionally with some extra description. `token_class` is used to alleviate overfitting to your customised images (the trained model should still keep the learnt prior so that it can still generate different dogs when the `[identifier]` is not in the prompt). Corresponding to the examples of the `token` above, the `token_class` can be `a dog` or `a photo of a dog`.
"""
)
submitted = st.form_submit_button(f"Upload")
if submitted:
with st.spinner('Uploading...'):
concept_information_dictionary = {
"file_path": generate_s3_get_url(zip_and_upload_images(
identifier, uploaded_files, "concept_three"), expiration_seconds=3600),
"token": token,
"class_token": class_token
}
st.session_state["concepts"].append(concept_information_dictionary)
st.success(f'Uploading {len(uploaded_files)} files done!')
switch_ux_state(UxState.PROMPT)
def run_prompts():
identifier = st.session_state["key"]
prompt_form = st.empty()
with prompt_form.form("prompt_form"):
#prompt = st.text_input("Token Name")
st.caption(
"""
The `[Prompt]` and `[Prompt Keywords]` are descriptions of what you would like the model to generate.
We recommend using a simple sentence covering 1 or 2 concepts for the Prompt. Nouns or adjectives are preferred, as verbs can be more challenging for the model. Examples of good `[prompts]`:
- A charlock plant in the snow
- A beaver wearing a suit
- A cat samurai with a pet pug
You may also add 1 to 3 comma-separated `[Prompt Keywords]` to describe the desired "mood" of the generated images. Examples of good `[Prompt Keywords]` include: concept art, steampunk, trending in ArtStation, good composition, hyper realistic, vivid colors, oil on canvas, Vincent van Gogh.
"""
)
st.text("")
full_prompt = st.text_input("Prompt")
prompt_keywords = st.text_input(f"Prompt Keywords")
submitted = st.form_submit_button(f"Submit")
if submitted:
st.session_state["prompt_keywords"] = prompt_keywords
st.session_state["prompt"] = full_prompt
st.session_state["ux_state"] = UxState.TRAIN
def run_train():
st.write("Congratulations, your model is training.")
st.write(f"We'll send an email to {st.session_state['user_email']} when it's finished, usually about 20-30 minutes.")
st.write("Closing this tab will not affect the ongoing image generation.")
with st.spinner("Training in progress..."):
st.session_state["model_inputs"] = {
"concepts": st.session_state["concepts"],
"num_images": 50,
"prompt": st.session_state["prompt"],
"prompt_keywords": st.session_state["prompt_keywords"]
}
s3_output_path = _S3_PATH_OUTPUT.format(identifier=st.session_state["key"], image_type="generated")
st.session_state['model_inputs']['identifier'] = st.session_state["key"]
st.session_state['model_inputs']['email'] = st.session_state["user_email"]
# The backend does not have s3 credentials, so generate
# presigned urls for the backend to use to write and read
# the generated images.
st.session_state['model_inputs']['output_s3_url_get'] = generate_s3_get_url(
s3_output_path, expiration_seconds=60 * 60 * 24,
)
st.session_state['model_inputs']['output_s3_url_put'] = generate_s3_put_url(
s3_output_path, expiration_seconds=3600,
)
train_model(st.session_state['model_inputs'])
switch_ux_state(UxState.FINISHED)
def run_finished():
st.success('Image generation completed!')
st.write(f"We've sent an email to {st.session_state['user_email']} with a link to your generated images. Check it out!")
if __name__ == "__main__":
setup_session_state()
ux_state = st.session_state["ux_state"]
runners = {
UxState.LOGIN_VIA_API_KEY: run_enter_api_key,
UxState.UPLOAD1: run_upload_initial,
UxState.UPLOAD2: run_upload_secondary,
UxState.UPLOAD3: run_upload_third,
UxState.PROMPT: run_prompts,
UxState.TRAIN: run_train,
UxState.FINISHED: run_finished,
}
if (runner := runners.get(ux_state)) is not None:
runner()
else:
raise ValueError(f"Internal app error, unknown ux_state='{ux_state}'")
|