File size: 11,813 Bytes
8da5944 0ea3651 8da5944 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 6 10:31:42 2023
@author: sanmpaul
"""
#Import the required Libraries
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import nltk
nltk.download('all')
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.stem import WordNetLemmatizer
from nltk.corpus import stopwords
from string import punctuation
import re
import pathlib
import time
import spacy
import s3fs
from ast import literal_eval
from operator import itemgetter
from collections import Counter
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModelForTokenClassification
import json
aws_access_key_id="ASIA2WUO352SZMWMOQU5"
aws_secret_access_key="wY9VOu1bVTsyNdfB2v/YT27/+IdpCENKr7Ksz68L"
aws_session_token="IQoJb3JpZ2luX2VjENj//////////wEaCXVzLWVhc3QtMSJHMEUCIQD6weAxsbMjC2gO6QzTx2UXDSrw43MFmDU+51XB3cAh1QIgUgp7KCkN8IC6XfHs7iYbh/oLFYhJaskpZ1smaES211Aq7QIIMBAAGgw3MzU4MTI3NzU1ODkiDH5ReYz2DBaO/Lel9yrKAls2Qhf0eeisMEqtdwiZeiEID9Tbc2ZBHIn67m/h2VtoTLw6MXN0Bx2yOsVImYE/2tyM7V/e5uuyOibDQKWf+SM02snjq/YvpGhuYSxm3tYSeIDWiJxSFuef3VcbvsFHMVpbSbZrY2LAVqugZANxSek7nflbWXGBxwT+E3eAoS9DKLGdBfFjtlbhT73Kact5Im8VS7ZhbLu2VaiTfWcUT4mjIDRS1z/0hB2byrbns/FYDmpu9lFTSB8M1dLJHjAuFdhLNla5JWYX3S6yRQQ1hOh3Q7luBGMsmRYo8vle/Ss8yLXygW5luDhu9gle9QPUbqdjAUqqeR1CWmseU5CBtC0zdEwniftexYFEq3ysqMgRFCsfZq2cQGlhWSW8EP9wpv8adif2xvcpJ7b/pzoPGQG2ubGXVy9gNFOW/jAccRIfSTITXw0Mg2MygDCu06ykBjqnAR1/pzYywwgaBZk7fJwv66EazUUGrVnR7dx5Pub0H1IjIlgGt+E5TBmMt95aj6ka2wC9ARHaLvta58ZVdQ8rtya+ZHl6TJG6XGRnMcyPabd6kvzk8l5LFm7hQ0r7zRS9nm+wThx5VYnVCP+C8nbwzyswIq3cnORy8XIL7UdtnvfE4p+13lxlZKZ4W4m2hE3c08xnMVok9GOLteZbpSERj3mxe7CWOc4J"
fs = s3fs.S3FileSystem(key=aws_access_key_id, secret=aws_secret_access_key, token=aws_session_token)
bucket_name = 'mimic3data'
folder_path = 'cleanedmimic'
file_name = 'extracted_diseases_DIAGNOSES.csv'
s3_file_path = f'{bucket_name}/{folder_path}/{file_name}'
# Add a title and intro text
st.title('Medical Coding Explorer')
st.text('This is a web app to allow exploration of the capabilities of Medical coding')
# Create file uploader object
upload_file = st.file_uploader('Upload a file containing medical data')
custom = set(stopwords.words('english') + list(punctuation))
to_check = ["TEXT","DESCRIPTION","CATEGORY","ROW_ID","SUBJECT_ID","HADM_ID","CHARTDATE","TEXT"]
def checkcols(x):
if not set(to_check).issubset(set(x.columns)):
return False
return True
headings = ["Discharge Diagnosis:","Final Diagnosis:","Final Report:","FINAL DIAGNOSES:","DISCHARGE DIAGNOSES:","PAST MEDICAL HISTORY:"]
pattern = r"(?i)(?:^|\n)(?:{})\s*([\s\S]*?)(?=\n\n\w|$)".format("|".join(re.escape(heading) for heading in headings))
def extractSummary(df):
for idx,rows in df.iterrows():
#print(f"ROW_ID--------------{rows['ROW_ID']}")
text = rows['TEXT']
matches = re.findall(pattern, text)
ext_txt_lst = []
for match in matches:
ext_txt_lst.append(match.strip().replace("\n", " "))
extracted_txt = " ".join([ts for ts in ext_txt_lst])
df.iloc[idx,5] = extracted_txt
df.iloc[idx,6] = " ".join([word.lower() for word in word_tokenize(extracted_txt) if word.isalpha() and word not in custom and len(word)>5])
sci_nlp = spacy.load('en_ner_bc5cdr_md')
abbreviations_to_remove = ["s/p", "d/c'd", "w/"]
chars_to_remove = ["#", ".", ")", "(", "[", "]"]
numeric_pattern = r'\d+'
text_col = "summaryInfo"
# Function to extract all diseases
def extract_diseases(text):
docx = sci_nlp(text)
results_diseases = [ent.text.lower() for ent in docx.ents if (ent.label_ == 'DISEASE')]
results_diseases2 = [' '.join(word for word in disease.split() if word not in abbreviations_to_remove) for disease in results_diseases]
results_diseases3 = [re.sub(numeric_pattern, '', phrase) for phrase in results_diseases2]
results_diseases4 = ["".join(c for c in phrase if c not in chars_to_remove) for phrase in results_diseases3]
results_diseases_cleaned = list(set(results_diseases4))
return results_diseases_cleaned
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
if "extract_button" not in st.session_state:
st.session_state.extract_button=False
if "ner_button" not in st.session_state:
st.session_state.ner_button=False
if "icd_button" not in st.session_state:
st.session_state.icd_button=False
def extractCallback():
st.session_state.extract_button=True
st.session_state.extract_spinner=True
def nercallback():
st.session_state.extract_button=True
st.session_state.ner_button=True
st.session_state.extract_spinner=False
st.session_state.ner_spinner=True
def icdcallback():
st.session_state.icd_button=True
st.session_state.extract_button=True
st.session_state.ner_button=True
st.session_state.icd_spinner=True
st.session_state.ner_spinner=False
model_name = "emilyalsentzer/Bio_ClinicalBERT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
def compareWith_ICD(row1,row2):
scobj=dict()
txt2 = row2['DISEASES']
code=row2['ICD9_CODE']
tkns = tokenizer([row1, txt2],padding=True,truncation=True,max_length=512)
score = cosine_similarity([tkns['input_ids'][0]], [tkns['input_ids'][1]])
scobj['ICD9_CODE']=code
scobj['score']=round(score[0][0],2)
return scobj
def compare(row):
obj = icd_df1.apply(lambda x: compareWith_ICD(row, x), axis=1)
return json.dumps(sorted(obj.to_list(), key=itemgetter('score'), reverse=True))
def top_icd(row):
sorted_lst = literal_eval(row)
k = [x['ICD9_CODE'] for x in sorted_lst]
new_vals=[]
for i in Counter(k):
all = [x for x in sorted_lst if x['ICD9_CODE']==i]
new_vals.append(max(all, key=lambda x: x['score']))
return json.dumps(sorted(new_vals, key=itemgetter('score'), reverse=True)[:5])
# Read the file from S3 using s3fs and store it in a Pandas DataFrame
with fs.open(s3_file_path, 'rb') as file:
icd_df = pd.read_csv(file)
icd_df['DISEASES'] = icd_df['DISEASES'].apply(literal_eval)
icd_df1 = icd_df.explode('DISEASES')
icd_df1 = icd_df1[icd_df1['DISEASES'].notna()]
icd_df1.drop(columns=['SEQ_NUM','SHORT_TITLE','LONG_TITLE'], inplace=True)
icd_df1.drop_duplicates(subset=["ICD9_CODE", "DISEASES"], inplace=True)
icd_df1.reset_index(drop=True, inplace=True)
# Check to see if a file has been uploaded
if upload_file is not None:
file_extension = pathlib.Path(upload_file.name).suffix
if file_extension=='.csv':
# Read the file to a dataframe using pandas
notevents_df = pd.read_csv(upload_file)
cols = notevents_df.columns
chk = checkcols(notevents_df)
if chk:
#Shape of Data Frame
st.caption(f'Shape of data: {notevents_df.shape}')
# Create a section for the dataframe header
st.info('Display top 5 rows of data')
st.write(notevents_df.head())
# Filter Data Frame
st.subheader('Extract Discharge Summary info')
if st.button('Extract', on_click=extractCallback) or st.session_state.extract_button:
#if st.session_state.extract_spinner:
with st.spinner('Extracting...'):
time.sleep(5)
notevents_df1 = notevents_df.loc[(notevents_df['DESCRIPTION']=='Report') & \
(notevents_df['CATEGORY']=='Discharge summary'),
['ROW_ID','SUBJECT_ID','HADM_ID','CHARTDATE','TEXT']]
notevents_df1['summaryInfo'] = np.nan
notevents_df1['cleanedTxt'] = np.nan
notevents_df1.reset_index(inplace=True, drop=True)
# notevents_df1['HADM_ID']=notevents_df1['HADM_ID'].astype('int')
extractSummary(notevents_df1)
notevents_df2 = notevents_df1.loc[notevents_df1['cleanedTxt']!=""]
notevents_df2.drop_duplicates(subset=["summaryInfo"], keep="first", inplace=True)
notevents_df2.drop(columns=['TEXT'], inplace=True)
st.caption(f'Shape of extracted data: {notevents_df2.shape}')
# Create a section for the dataframe header
st.info('Display top 5 rows of extracted data')
st.write(notevents_df2.head())
st.subheader('Extract Disease Information')
if st.button('Run NER Model', on_click=nercallback) or st.session_state.ner_button:
with st.spinner('Running NER...'):
time.sleep(15)
st.text(f"notevents_df2-------{notevents_df2.shape}")
notevents_df2['DISEASES'] = notevents_df2[text_col].apply(lambda x: extract_diseases(x))
# notevents_df2['DISEASES'] = notevents_df2['DISEASES'].apply(literal_eval)
st.subheader('Display top 5 rows after running NER Model')
st.write(notevents_df2.head())
csv = convert_df(notevents_df2)
st.download_button(
"Press to Download",
csv,
"NER_diseases.csv",
"text/csv",
key='download-csv'
)
st.subheader('Map Disease to ICD9 Codes')
if st.button('Run ICD Model'):
#if st.session_state.icd_spinner:
with st.spinner('icd model running...'):
time.sleep(15)
notevents_df2.drop_duplicates(subset=['HADM_ID'],inplace=True)
ex_disease_df1 = notevents_df2.explode('DISEASES')
ex_disease_df1 = ex_disease_df1[ex_disease_df1['DISEASES'].notna()]
ex_disease_df1 = ex_disease_df1[ex_disease_df1['DISEASES']!=""]
ex_disease_df1.drop(columns=['ROW_ID','SUBJECT_ID','CHARTDATE','summaryInfo','cleanedTxt'], inplace=True)
ex_disease_df1['DISEASES']=ex_disease_df1['DISEASES'].str.replace("/", " ")
ex_disease_df1.drop_duplicates(subset=["DISEASES"], keep="first", inplace=True)
ex_disease_df1.reset_index(drop=True, inplace=True)
ex_disease_df1['icd_map'] = ex_disease_df1.apply(lambda x: compare(x['DISEASES']), axis=1)
ex_disease_df1['top5_icd'] = ex_disease_df1.apply(lambda x: top_icd(x['icd_map']), axis=1)
ex_disease_df1.drop(columns=['icd_map'], inplace=True)
st.info('Display top 5 rows of icd mapping')
st.write(ex_disease_df1.head())
csv = convert_df(ex_disease_df1)
st.download_button(
"Press to Download",
csv,
"top5icd.csv",
"text/csv",
key='top5icd-csv'
)
else:
st.error('Invalid csv file', icon="π¨")
else:
st.error('Upload a csv file', icon="π¨")
|