Spaces:
Sleeping
Sleeping
File size: 8,638 Bytes
33e55ac e9fbea3 4637479 7f81147 e9fbea3 4637479 e9fbea3 e41e3ea e9fbea3 e41e3ea 4637479 e9fbea3 4637479 e41e3ea 4637479 e41e3ea 4db4bdc e9fbea3 4db4bdc 50215fb 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc 7f81147 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc 7f81147 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc e9fbea3 4db4bdc 33e55ac 4db4bdc 33e55ac 4db4bdc 33e55ac 4db4bdc 7f81147 4db4bdc 7f81147 4db4bdc e9fbea3 4db4bdc 4637479 4db4bdc 4637479 33e55ac 4db4bdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import pandas as pd
import numpy as np
import yfinance as yf
import streamlit as st
import plotly.graph_objects as go
with open(r"style/style.css") as css:
st.markdown(f"<style>{css.read()}</style>", unsafe_allow_html=True)
st.markdown(
"<h1 style='text-align: center;'><u>CapiPort</u></h1>", unsafe_allow_html=True
)
st.markdown(
"<h5 style='text-align: center; color: gray;'>Your Portfolio Optimisation Tool</h5>",
unsafe_allow_html=True,
)
st.header(
"",
divider="rainbow",
)
color = "Quest"
st.markdown(
"<h1 style='text-align: center;'>🔍 Quest for financial excellence begins with meticulous portfolio optimization</u></h1>",
unsafe_allow_html=True,
)
st.header(
"",
divider="rainbow",
)
list_df = pd.read_csv("Data/Company List.csv")
company_name = list_df["Name"].to_list()
company_symbol = (list_df["Ticker"] + ".NS").to_list()
company_dict = dict()
company_symbol_dict = dict()
for CSymbol, CName in zip(company_symbol, company_name):
company_dict[CName] = CSymbol
for CSymbol, CName in zip(company_symbol, company_name):
company_symbol_dict[CSymbol] = CName
st.markdown(
"""
<style>
.big-font {
font-size:20px;
}
</style>""",
unsafe_allow_html=True,
)
st.markdown('<p class="big-font">Select Multiple Companies</p>', unsafe_allow_html=True)
com_sel_name = st.multiselect("", company_name, default=None)
com_sel = [company_dict[i] for i in com_sel_name]
num_tick = len(com_sel)
if num_tick > 1:
com_data = yf.download(com_sel, start="1900-01-01", end="2024-03-08")["Adj Close"]
for i in com_data.columns:
com_data.dropna(axis=1, how='all', inplace=True)
com_data.dropna(inplace=True)
num_tick = len(com_data.columns)
if num_tick > 1:
com_sel_name_temp = []
for i in com_data.columns:
com_sel_name_temp.append(company_symbol_dict[i])
com_sel = com_data.columns.to_list()
com_sel_name.sort()
st.dataframe(com_data, use_container_width=True)
## Log-Return of Company Dataset
log_return = np.log(1 + com_data.pct_change())
## Generate Random Weights
rand_weig = np.array(np.random.random(num_tick))
## Rebalancing Random Weights
rebal_weig = rand_weig / np.sum(rand_weig)
## Calculate the Expected Returns, Annualize it by * 247.0
exp_ret = np.sum((log_return.mean() * rebal_weig) * 247)
## Calculate the Expected Volatility, Annualize it by * 247.0
exp_vol = np.sqrt(np.dot(rebal_weig.T, np.dot(log_return.cov() * 247, rebal_weig)))
## Calculate the Sharpe Ratio.
sharpe_ratio = exp_ret / exp_vol
# Put the weights into a data frame to see them better.
weights_df = pd.DataFrame(
data={
"company_name": com_sel_name_temp,
"random_weights": rand_weig,
"rebalance_weights": rebal_weig,
}
)
st.divider()
st.markdown(
"<h5 style='text-align: center;'>Random Portfolio Weights</h5>",
unsafe_allow_html=True,
)
st.dataframe(weights_df, use_container_width=True)
# Do the same with the other metrics.
metrics_df = pd.DataFrame(
data={
"Expected Portfolio Returns": exp_ret,
"Expected Portfolio Volatility": exp_vol,
"Portfolio Sharpe Ratio": sharpe_ratio,
},
index=[0],
)
st.markdown(
"<h5 style='text-align: center;'>Random Weights Metrics</h5>",
unsafe_allow_html=True,
)
st.dataframe(metrics_df, use_container_width=True)
st.divider()
## Let's get started with Monte Carlo Simulations
## How many times should we run Monte Carlo
num_of_port = 8000
## Create an Array to store the weights as they are generated
all_weights = np.zeros((num_of_port, num_tick))
## Create an Array to store the returns as they are generated
ret_arr = np.zeros(num_of_port)
## Create an Array to store the volatilities as they are generated
vol_arr = np.zeros(num_of_port)
## Create an Array to store the Sharpe Ratios as they are generated
sharpe_arr = np.zeros(num_of_port)
## Let's start the Monte Carlo Simulation
for ind in range(num_of_port):
## Let's first Calculate the Weights
weig = np.array(np.random.random(num_tick))
weig = weig / np.sum(weig)
## Append the Weights to Weigths array
all_weights[ind, :] = weig
## Calculate and Append the Expected Log Returns to Returns Array
ret_arr[ind] = np.sum((log_return.mean() * weig) * 247)
## Calculate and Append the Volatility to the Volatitlity Array
vol_arr[ind] = np.sqrt(np.dot(weig.T, np.dot(log_return.cov() * 247, weig)))
## Calculate and Append the Sharpe Ratio to Sharpe Ratio Array
sharpe_arr[ind] = ret_arr[ind] / vol_arr[ind]
## Let's create a Data Frame with Weights, Returns, Volatitlity, and the Sharpe Ratio
sim_data = [ret_arr, vol_arr, sharpe_arr, all_weights]
## Create a Data Frame using above, then Transpose it
sim_df = pd.DataFrame(data=sim_data).T
## Give the columns in Simulation Data Proper Names
sim_df.columns = ["Returns", "Volatility", "Sharpe Ratio", "Portfolio Weights"]
## Make sure the Data Types are correct in the Data Frame
sim_df = sim_df.infer_objects()
# Print out the results.
st.write("\n\n")
st.markdown(
"<h4 style='text-align: center;'>Simulation Results</h4>",
unsafe_allow_html=True,
)
st.dataframe(sim_df.head(), use_container_width=True)
# Return the Max Sharpe Ratio from the run.
max_sharpe_ratio = sim_df.loc[sim_df["Sharpe Ratio"].idxmax()]
# Return the Min Volatility from the run.
min_volatility = sim_df.loc[sim_df["Volatility"].idxmin()]
max_sharpe_weights_df = pd.DataFrame(
data={
"company_name": com_sel_name_temp,
"random_weights": max_sharpe_ratio["Portfolio Weights"],
}
)
st.markdown(
"<h5 style='text-align: center;'>Portfolio with Max Sharpe Ratio</h5>",
unsafe_allow_html=True,
)
st.dataframe(max_sharpe_ratio, use_container_width=True)
st.dataframe(max_sharpe_weights_df, use_container_width=True)
min_volatility_weights_df = pd.DataFrame(
data={
"company_name": com_sel_name_temp,
"random_weights": min_volatility["Portfolio Weights"],
}
)
st.markdown(
"<h5 style='text-align: center;'>Portfolio with Min Volatility</h5>",
unsafe_allow_html=True,
)
st.dataframe(min_volatility, use_container_width=True)
st.dataframe(min_volatility_weights_df, use_container_width=True)
st.divider()
st.markdown("<h1 style='text-align: center;'>Plotting</h1>", unsafe_allow_html=True)
fig = go.Figure(
data=go.Scatter(
x=sim_df["Volatility"],
y=sim_df["Returns"],
mode="markers",
marker=dict(color=sim_df["Sharpe Ratio"], colorscale="RdYlBu", size=10),
)
)
# Add color bar
fig.update_layout(coloraxis_colorbar=dict(title="Sharpe Ratio"))
# Add title and axis labels
fig.update_layout(
title="Portfolio Returns Vs. Risk",
xaxis=dict(title="Standard Deviation / Volatility"),
yaxis=dict(title="Returns"),
)
# Plot the Max Sharpe Ratio, using a `Red Star`.
fig.add_trace(
go.Scatter(
x=[max_sharpe_ratio[1]],
y=[max_sharpe_ratio[0]],
mode="markers",
marker=dict(color="red", symbol="star", size=20),
name="Max Sharpe Ratio",
)
)
# Plot the Min Volatility, using a `Blue Star`.
fig.add_trace(
go.Scatter(
x=[min_volatility[1]],
y=[min_volatility[0]],
mode="markers",
marker=dict(color="blue", symbol="star", size=20),
name="Min Volatility",
)
)
st.plotly_chart(fig, use_container_width=True)
|