File size: 9,047 Bytes
db3176e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import PIL
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.nn.functional as F
import torchvision.transforms as T
from diffusers import LMSDiscreteScheduler, DiffusionPipeline

# configurations
torch_device        = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
height, width       = 512, 512
guidance_scale      = 8
blue_loss_scale     = 200
num_inference_steps = 50

elastic_transformer = T.ElasticTransform(alpha=550.0, sigma=5.0)



pretrained_model_name_or_path = "segmind/tiny-sd"
pipe = DiffusionPipeline.from_pretrained(
    pretrained_model_name_or_path,
    low_cpu_mem_usage = True,
    torch_dtype=torch.float16
).to(torch_device)


pipe.load_textual_inversion("sd-concepts-library/dreams")
pipe.load_textual_inversion("sd-concepts-library/midjourney-style")
pipe.load_textual_inversion("sd-concepts-library/moebius")
pipe.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
pipe.load_textual_inversion("sd-concepts-library/wlop-style")


concepts_mapping = {
    "Dream": '<meeg>', "Midjourney":'<midjourney-style>',
    "Marc Allante": '<Marc_Allante>', "Moebius": '<moebius>',
    "Wlop": '<wlop-style>'
}


def image_loss(images, method='elastic'):

    # elastic loss
    if method == 'elastic':
      transformed_imgs = elastic_transformer(images)
      error = torch.abs(transformed_imgs - images).mean()

    # symmetry loss - Flip the image along the width
    elif method == "symmetry":
      flipped_image = torch.flip(images, [3])
      error = F.mse_loss(images, flipped_image)

    # saturation loss
    elif method == 'saturation':
      transformed_imgs = T.functional.adjust_saturation(images,saturation_factor = 10)
      error = torch.abs(transformed_imgs - images).mean()

    # blue loss
    elif method == 'blue':
      error = torch.abs(images[:,2] - 0.9).mean() # [:,2] -> all images in batch, only the blue channel

    return error


HTML_TEMPLATE = """
<style>
    body {
        background: linear-gradient(135deg, #f5f7fa, #c3cfe2);
    }
    #app-header {
        text-align: center;
        background: rgba(255, 255, 255, 0.8); /* Semi-transparent white */
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        position: relative; /* To position the artifacts */
    }
    #app-header h1 {
        color: #4CAF50;
        font-size: 2em;
        margin-bottom: 10px;
    }
    .concept {
        position: relative;
        transition: transform 0.3s;
    }
    .concept:hover {
        transform: scale(1.1);
    }
    .concept img {
        width: 100px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    .concept-description {
        position: absolute;
        bottom: -30px;
        left: 50%;
        transform: translateX(-50%);
        background-color: #4CAF50;
        color: white;
        padding: 5px 10px;
        border-radius: 5px;
        opacity: 0;
        transition: opacity 0.3s;
    }
    .concept:hover .concept-description {
        opacity: 1;
    }
    /* Artifacts */
    .artifact {
        position: absolute;
        background: rgba(76, 175, 80, 0.1); /* Semi-transparent green */
        border-radius: 50%; /* Make it circular */
    }
    .artifact.large {
        width: 300px;
        height: 300px;
        top: -50px;
        left: -150px;
    }
    .artifact.medium {
        width: 200px;
        height: 200px;
        bottom: -50px;
        right: -100px;
    }
    .artifact.small {
        width: 100px;
        height: 100px;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
    }
</style>
<div id="app-header">
    <!-- Artifacts -->
    <div class="artifact large"></div>
    <div class="artifact medium"></div>
    <div class="artifact small"></div>
    <!-- Content -->
    <h1>Art Generator</h1>
    <p>Generate new art in five different styles by providing a prompt.</p>
    <div style="display: flex; justify-content: center; gap: 20px; margin-top: 20px;">
        <div class="concept">
            <img src="https://github.com/Delve-ERAV1/S20/assets/11761529/30ac92f8-fc62-4aab-9221-043865c6fe7c" alt="Midjourney">
            <div class="concept-description">Midjourney Style</div>
        </div>
        <div class="concept">
            <img src="https://github.com/Delve-ERAV1/S20/assets/11761529/54c9a61e-df9f-4054-835b-ec2c6ba5916c" alt="Dreams">
            <div class="concept-description">Dreams Style</div>
        </div>
        <div class="concept">
            <img src="https://github.com/Delve-ERAV1/S20/assets/11761529/2f37e402-15d1-4a74-ba85-bb1566da930e" alt="Moebius">
            <div class="concept-description">Moebius Style</div>
        </div>
        <div class="concept">
            <img src="https://github.com/Delve-ERAV1/S20/assets/11761529/f838e767-ac20-4996-b5be-65c61b365ce0" alt="Allante">
            <div class="concept-description">Hong Kong born artist inspired by western and eastern influences</div>
        </div>
        <div class="concept">
            <img src="https://github.com/Delve-ERAV1/S20/assets/11761529/9958140a-1b62-4972-83ca-85b023e3863f" alt="Wlop">
            <div class="concept-description">WLOP (Born 1987) is known for Digital Art (NFTs)</div>
        </div>
    </div>
</div>
"""


def get_examples():
   examples = [
      ['A powerful man in dreadlocks', 'Dream', 'Symmetry', 45],
      ['World Peace', 'Marc Allante', 'Saturation', 147],
      ['Storm trooper in the desert, dramatic lighting, high-detail', 'Moebius', 'Elastic', 28],
      ['Delicious Italian pizza on a table, a window in the background overlooking a city skyline', 'Wlop', 'Blue', 50],
   ]
   return(examples)


def latents_to_pil(latents):
    # bath of latents -> list of images
    latents = (1 / 0.18215) * latents
    with torch.no_grad():
        image = pipe.vae.decode(latents).sample
    image = (image / 2 + 0.5).clamp(0, 1) # 0 to 1
    image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
    image = (image * 255).round().astype("uint8")
    return Image.fromarray(image[0])


def generate_art(prompt, concept, method, seed):

  prompt = f"{prompt} in the style of {concepts_mapping[concept]}"
  img_no_loss = latents_to_pil(generate_image(prompt, method, seed))
  img_loss = latents_to_pil(generate_image(prompt, method, seed, loss_apply=True))
  return([img_no_loss, img_loss])


def generate_image(prompt, method, seed, loss_apply=False):

    generator           = torch.manual_seed(seed)
    batch_size          = 1
    method              = method.lower()

    # scheduler
    scheduler    = LMSDiscreteScheduler(beta_start = 0.00085, beta_end = 0.012, beta_schedule = "scaled_linear", num_train_timesteps = 1000)
    scheduler.set_timesteps(50)
    scheduler.timesteps = scheduler.timesteps.to(torch.float32)

    # text embeddings of the prompt
    text_input = pipe.tokenizer([prompt], padding='max_length', max_length = pipe.tokenizer.model_max_length, truncation= True, return_tensors="pt")
    input_ids = text_input.input_ids.to(torch_device)

    with torch.no_grad():
        text_embeddings = pipe.text_encoder(text_input.input_ids.to(torch_device))[0]

    max_length = text_input.input_ids.shape[-1]
    uncond_input = pipe.tokenizer(
          [""] * 1, padding="max_length", max_length= max_length, return_tensors="pt"
    )

    with torch.no_grad():
        uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(torch_device))[0]

    text_embeddings = torch.cat([uncond_embeddings,text_embeddings]) 

    # random latent
    latents = torch.randn(
        (batch_size, pipe.unet.config.in_channels, height// 8, width //8),
        generator = generator,
    ).to(torch.float16)


    latents = latents.to(torch_device)
    latents = latents * scheduler.init_noise_sigma

    for i, t in tqdm(enumerate(scheduler.timesteps), total = len(scheduler.timesteps)):

        latent_model_input = torch.cat([latents] * 2)
        sigma = scheduler.sigmas[i]
        latent_model_input = scheduler.scale_model_input(latent_model_input, t)

        with torch.no_grad():
            noise_pred = pipe.unet(latent_model_input.to(torch.float16), t, encoder_hidden_states=text_embeddings)["sample"]

        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

        if loss_apply and i%5 == 0:

            latents = latents.detach().requires_grad_()
            latents_x0 = latents - sigma * noise_pred

            # use vae to decode the image
            denoised_images = pipe.vae.decode((1/ 0.18215) * latents_x0).sample / 2 + 0.5 # range(0,1)

            loss = image_loss(denoised_images, method) * blue_loss_scale

            cond_grad = torch.autograd.grad(loss, latents)[0]
            latents = latents.detach() - cond_grad * sigma**2

        latents = scheduler.step(noise_pred,t, latents).prev_sample

    return latents