Spaces:
Runtime error
Runtime error
File size: 14,300 Bytes
66e1055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
"""Full definition of a GPT NeoX Language Model, all of it in this single file.
Based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT and
https://github.com/EleutherAI/gpt-neox/tree/main/megatron/model.
"""
import math
from typing import Any, Optional, Tuple
import torch
import torch.nn as nn
from typing_extensions import Self
from tsai_gpt.config import Config
class GPT(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
assert config.padded_vocab_size is not None
self.config = config
self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
)
)
self.max_seq_length = self.config.block_size
self.mask_cache: Optional[torch.Tensor] = None
@property
def max_seq_length(self) -> int:
return self._max_seq_length
@max_seq_length.setter
def max_seq_length(self, value: int) -> None:
"""
When doing inference, the sequences used might be shorter than the model's context length.
This allows setting a smaller number to avoid allocating unused memory
"""
if value > self.config.block_size:
raise ValueError(f"Cannot attend to {value}, block size is only {self.config.block_size}")
self._max_seq_length = value
if not hasattr(self, "cos"):
# first call
cos, sin = self.rope_cache()
self.register_buffer("cos", cos, persistent=False)
self.register_buffer("sin", sin, persistent=False)
elif value != self.cos.size(0):
# override
self.cos, self.sin = self.rope_cache(device=self.cos.device)
# the mask and kv cache size will get updated on `set_kv_cache`. we cannot update it here because we don't know
# if the kv cache is expected
def reset_parameters(self) -> None:
# Trigger resetting the rope-cache
self.max_seq_length = self.config.block_size
def _init_weights(self, module: nn.Module) -> None:
"""Meant to be used with `gpt.apply(gpt._init_weights)`."""
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None) -> torch.Tensor:
T = idx.size(1)
if self.max_seq_length < T:
raise ValueError(f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}.")
if input_pos is not None: # use the kv cache
cos = self.cos.index_select(0, input_pos)
sin = self.sin.index_select(0, input_pos)
if self.mask_cache is None:
raise TypeError("You need to call `gpt.set_kv_cache()`")
mask = self.mask_cache.index_select(2, input_pos)
else:
cos = self.cos[:T]
sin = self.sin[:T]
mask = None
x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
for block in self.transformer.h:
x = block(x, cos, sin, mask, input_pos)
x = self.transformer.ln_f(x)
return self.lm_head(x) # (b, t, vocab_size)
@classmethod
def from_name(cls, name: str, **kwargs: Any) -> Self:
return cls(Config.from_name(name, **kwargs))
def rope_cache(self, device: Optional[torch.device] = None) -> Tuple[torch.Tensor, torch.Tensor]:
return build_rope_cache(
seq_len=self.max_seq_length,
n_elem=self.config.rope_n_elem,
device=device,
condense_ratio=self.config.rope_condense_ratio,
base=self.config.rope_base,
)
def set_kv_cache(
self,
batch_size: int,
rope_cache_length: Optional[int] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
if rope_cache_length is None:
rope_cache_length = self.cos.size(-1)
max_seq_length = self.max_seq_length
# initialize the kv cache for all blocks
for block in self.transformer.h:
block.attn.kv_cache = block.attn.build_kv_cache(
batch_size, max_seq_length, rope_cache_length, device, dtype
)
if self.mask_cache is None or self.mask_cache.size(3) != max_seq_length:
# passing `attn_mask` to SDPA downgrades it to use the inefficient implementation. since we only need the mask
# for the kv-cache support (only during inference), we only create it in that situation
# this will be resolved by https://github.com/pytorch/pytorch/issues/96099
ones = torch.ones((max_seq_length, max_seq_length), device=device, dtype=torch.bool)
self.mask_cache = torch.tril(ones).unsqueeze(0).unsqueeze(0)
def clear_kv_cache(self) -> None:
self.mask_cache = None
for block in self.transformer.h:
block.attn.kv_cache = None
class Block(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config)
self.norm_2 = None if config.shared_attention_norm else config.norm_class(config.n_embd, eps=config.norm_eps)
self.mlp = config.mlp_class(config)
self.config = config
def forward(
self,
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
mask: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
) -> torch.Tensor:
n_1 = self.norm_1(x)
h = self.attn(n_1, cos, sin, mask, input_pos)
if self.config.parallel_residual:
n_2 = n_1 if self.config.shared_attention_norm else self.norm_2(x)
x = self.mlp(n_2) + h + x
else:
if self.config.shared_attention_norm:
raise NotImplementedError(
"No checkpoint amongst the ones we support uses this configuration"
" (non-parallel residual and shared attention norm)."
)
x = h + x
x = self.mlp(self.norm_2(x)) + x
return x
class CausalSelfAttention(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
# key, query, value projections for all heads, but in a batch
self.attn = nn.Linear(config.n_embd, shape, bias=config.bias)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
# disabled by default
self.kv_cache: Optional[KVCache] = None
self.config = config
def forward(
self,
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
mask: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
) -> torch.Tensor:
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
qkv = self.attn(x)
# assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
q_per_kv = self.config.n_head // self.config.n_query_groups
total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value
qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs)
# split batched computation into three
q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)
# maybe repeat k and v if for the non multi-head attention cases
# training: flash attention requires it
# inference: multi-query would require a full kv cache so avoid it to limit its memory usage
if self.config.n_query_groups != self.config.n_head and (input_pos is None or self.config.n_query_groups != 1):
k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs)
k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs)
v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs)
q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)
if input_pos is not None:
if not isinstance(self.kv_cache, KVCache):
raise TypeError("You need to call `gpt.set_kv_cache()`")
k, v = self.kv_cache(input_pos, k, v)
y = self.scaled_dot_product_attention(q, k, v, mask)
y = y.reshape(B, T, C) # re-assemble all head outputs side by side
# output projection
return self.proj(y)
def scaled_dot_product_attention(
self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, mask: Optional[torch.Tensor] = None
) -> torch.Tensor:
scale = 1.0 / math.sqrt(self.config.head_size)
y = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=mask, dropout_p=0.0, scale=scale, is_causal=mask is None
)
return y.transpose(1, 2)
def build_kv_cache(
self,
batch_size: int,
max_seq_length: int,
rope_cache_length: Optional[int] = None,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> "KVCache":
heads = 1 if self.config.n_query_groups == 1 else self.config.n_head
v_shape = (batch_size, heads, max_seq_length, self.config.head_size)
if rope_cache_length is None:
if self.config.rotary_percentage != 1.0:
raise TypeError("Please pass the `rope_cache_length=gpt.cos.size(-1)` value")
k_shape = v_shape
else:
k_shape = (
batch_size,
heads,
max_seq_length,
rope_cache_length + self.config.head_size - self.config.rope_n_elem,
)
return KVCache(k_shape, v_shape, device=device, dtype=dtype)
class GptNeoxMLP(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.fc = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
self.config = config
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.fc(x)
x = torch.nn.functional.gelu(x, approximate=self.config.gelu_approximate)
return self.proj(x)
class LLaMAMLP(nn.Module):
def __init__(self, config: Config) -> None:
super().__init__()
self.fc_1 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.fc_2 = nn.Linear(config.n_embd, config.intermediate_size, bias=config.bias)
self.proj = nn.Linear(config.intermediate_size, config.n_embd, bias=config.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_fc_1 = self.fc_1(x)
x_fc_2 = self.fc_2(x)
x = torch.nn.functional.silu(x_fc_1) * x_fc_2
return self.proj(x)
def build_rope_cache(
seq_len: int, n_elem: int, device: Optional[torch.device] = None, base: int = 10000, condense_ratio: int = 1
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Enhanced Transformer with Rotary Position Embedding.
Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
transformers/rope/__init__.py. MIT License:
https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
"""
# $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, device=device).float() / n_elem))
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, device=device) / condense_ratio
# Calculate the product of position index and $\theta_i$
idx_theta = torch.outer(seq_idx, theta).repeat(1, 2)
return torch.cos(idx_theta), torch.sin(idx_theta)
def apply_rope(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
head_size = x.size(-1)
x1 = x[..., : head_size // 2] # (B, nh, T, hs/2)
x2 = x[..., head_size // 2 :] # (B, nh, T, hs/2)
rotated = torch.cat((-x2, x1), dim=-1) # (B, nh, T, hs)
roped = (x * cos) + (rotated * sin)
return roped.type_as(x)
class KVCache(nn.Module):
def __init__(
self,
k_shape: Tuple[int, int, int, int],
v_shape: Tuple[int, int, int, int],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__()
self.register_buffer("k", torch.zeros(k_shape, device=device, dtype=dtype), persistent=False)
self.register_buffer("v", torch.zeros(v_shape, device=device, dtype=dtype), persistent=False)
def forward(self, input_pos: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# move the buffer to the activation dtype for when AMP is used
self.k = self.k.to(k.dtype)
self.v = self.v.to(v.dtype)
# update the cache
k = self.k.index_copy_(2, input_pos, k)
v = self.v.index_copy_(2, input_pos, v)
return k, v |