Spaces:
Runtime error
Runtime error
File size: 7,838 Bytes
98cded4 88e7442 3f7f93d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib as plt
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
import gradio as gr
from array import *
#from google.colab import drive
#drive.mount('/content/drive')
df_train = pd.read_csv("train_ctrUa4K.csv") #Reading the dataset in a dataframe using Pandas
df_train.head()
df_train.describe()
df_train.shape
df_train.info()
df_train.isnull().sum()
print(df_train['Gender'].value_counts())
print(df_train['Married'].value_counts())
print(df_train['Dependents'].value_counts())
print(df_train['Self_Employed'].value_counts())
print(df_train['Credit_History'].value_counts())
print(df_train['Property_Area'].value_counts())
df_train['Gender'].fillna("Male", inplace = True)
df_train['Married'].fillna("Yes", inplace = True)
df_train['Dependents'].fillna("0", inplace = True)
df_train['Self_Employed'].fillna("No", inplace = True)
df_train['Credit_History'].fillna(1.0, inplace = True)
df_train.isnull().sum()
duplicate=df_train.duplicated()
print(duplicate.sum())
df_train[duplicate]
fig, ax = plt.subplots(3, 2, figsize = (10, 7))
sns.boxplot(x= df_train["ApplicantIncome"], ax = ax[0,0])
sns.distplot(df_train['ApplicantIncome'], ax = ax[0,1])
sns.boxplot(x= df_train["CoapplicantIncome"], ax = ax[1,0])
sns.distplot(df_train['CoapplicantIncome'], ax = ax[1,1])
sns.boxplot(x= df_train["Loan_Amount_Term"], ax = ax[2,0])
sns.distplot(df_train['Loan_Amount_Term'], ax = ax[2,1])
def remove_outlier(col):
sorted(col)
Q1, Q3=col.quantile([0.25, 0.75])
IQR=Q3-Q1
lower_range=Q1-(1.5*IQR)
upper_range=Q3+(1.5*IQR)
return lower_range, upper_range
low_AI, high_AI=remove_outlier(df_train['ApplicantIncome'])
df_train['ApplicantIncome']=np.where(df_train['ApplicantIncome']>high_AI, high_AI, df_train['ApplicantIncome'])
df_train['ApplicantIncome']=np.where(df_train['ApplicantIncome']<low_AI, low_AI, df_train['ApplicantIncome'])
low_CI, high_CI=remove_outlier(df_train['CoapplicantIncome'])
df_train['CoapplicantIncome']=np.where(df_train['CoapplicantIncome']>high_CI, high_CI, df_train['CoapplicantIncome'])
df_train['CoapplicantIncome']=np.where(df_train['CoapplicantIncome']<low_CI, low_CI, df_train['CoapplicantIncome'])
low_LAT, high_LAT=remove_outlier(df_train['Loan_Amount_Term'])
df_train['Loan_Amount_Term']=np.where(df_train['Loan_Amount_Term']>high_LAT, high_LAT, df_train['Loan_Amount_Term'])
df_train['Loan_Amount_Term']=np.where(df_train['Loan_Amount_Term']<low_LAT, low_LAT, df_train['Loan_Amount_Term'])
df_train.boxplot(column=['ApplicantIncome'])
plt.show()
df_train.boxplot(column=['CoapplicantIncome'])
plt.show()
df_train.boxplot(column=['Loan_Amount_Term'])
plt.show()
df_train.isnull().sum()
df_train['Loan_Amount_Term'].fillna(360, inplace = True)
table = df_train.pivot_table(values='LoanAmount', index='Self_Employed' ,columns='Education', aggfunc=np.median)
table
def val(x):
return table.loc[x['Self_Employed'],x['Education']]
df_train['LoanAmount'].fillna(df_train[df_train['LoanAmount'].isnull()].apply(val, axis=1), inplace=True)
df_train['Total_income']=df_train['ApplicantIncome']+df_train['CoapplicantIncome']
df_train.head()
df=df_train
label_encoder = preprocessing.LabelEncoder()
df['Gender']= label_encoder.fit_transform(df['Gender'])
df
df['Married']= label_encoder.fit_transform(df['Married'])
df['Education']= label_encoder.fit_transform(df['Education'])
df['Self_Employed']= label_encoder.fit_transform(df['Self_Employed'])
df['Property_Area']= label_encoder.fit_transform(df['Property_Area'])
df['Dependents']= label_encoder.fit_transform(df['Dependents'])
df.head()
x=df_train[['Gender','Married','Dependents','Education','Self_Employed', 'LoanAmount','Loan_Amount_Term','Credit_History','Property_Area', 'Total_income']]
y=df_train[['Loan_Status']]
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4)
"""LOGISTIC REGRESSION"""
from sklearn.metrics import classification_report, confusion_matrix
import itertools
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
from sklearn.model_selection import GridSearchCV,RandomizedSearchCV
from sklearn.linear_model import LogisticRegression
#from sklearn.metrics import confusion_matrix
parametersLR={ 'penalty' : ['l1', 'l2', 'elasticnet', 'none'],
'C': [1, 0.5, 0.1, 0.01],
'fit_intercept': [True, False],
'solver' : ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
'random_state':[10, 50, 100, 'none']
}
LR = LogisticRegression()
#r = RandomizedSearchCV(LR,parametersLR)
g=GridSearchCV(LR, parametersLR)
g.fit(x_train, y_train)
ypred = g.predict(x_test)
ypred
print (classification_report(y_test, ypred))
l = {'Gender': [1],
'Married': [0],
'Dependents':[0],
'Education':[0],
'Self_Employed':[0],
'LoanAmount':[130],
'Loan_Amount_Term':[360],
'Credit_History':[1],
'Property_Area':[2],
'Total_income':[5849]
}
df=pd.DataFrame(l)
ans = g.predict(df)
ans2 = ans.tolist()
ans2[0]
df
def pred(Gender, Marital_Status, Dependents, Education, Self_Employed, Loan_Amount, Credit_History, Property_Area, Total_Income):
if Gender == "Male":
gen=1
elif Gender =="Female":
gen=0
if Marital_Status=="Married":
m=1
elif Marital_Status=="Unmarried":
m=0
if Dependents=="0":
d=0
elif Dependents=="1":
d=1
elif Dependents=="2":
d=2
elif Dependents=="3+":
d=3
if Education=="Educated":
e=1
elif Education == "Uneducated":
e=0
if Self_Employed=="Yes":
se=1
elif Self_Employed=="No":
se=0
if Credit_History=="1":
ch=1
elif Credit_History=="0":
ch=0
if Property_Area=="0":
pa=0
elif Property_Area=="1":
pa=1
elif Propert_Area=="2":
pa=2
l = {'Gender': [gen],
'Married': [m],
'Dependents':[d],
'Education':[e],
'Self_Employed':[se],
'LoanAmount':[Loan_Amount],
'Loan_Amount_Term':[360],
'Credit_History':[ch],
'Property_Area':[pa],
'Total_income':[Total_Income]
}
df=pd.DataFrame(l)
ans = g.predict(df)
ans2 = ans.tolist()
if ans2[0]=="Y":
return "Loan Status: Approved!"
elif ans2[0]=="N":
return "Loan Status: Disapproved"
iface = gr.Interface(
fn=pred,
inputs=[gr.inputs.Radio(["Male", "Female"]), gr.inputs.Radio(["Married", "Unmarried"]),gr.inputs.Radio(["0", "1","2", "3+"]), gr.inputs.Radio(["Educated", "Uneducated"]), gr.inputs.Radio(["Yes", "No"]), "text", gr.inputs.Radio(["1", "0"]), gr.inputs.Radio(["0", "1", "2"]), "text"],
outputs="text")
iface.launch(inline=False) |