Spaces:
Sleeping
Sleeping
File size: 7,379 Bytes
2444fb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import streamlit as st
import pandas as pd
import os
import base64
# Import evaluation modules
from phoenix_code import phoenix_eval
from ragas_code import ragas_eval
from traditional_metrics_score import RAGEvaluator
# Set page configuration
st.set_page_config(
page_title="RAG Evaluation Toolkit",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for improved styling
def local_css(file_name):
with open(file_name) as f:
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
# Function to create a more visually appealing file uploader
def custom_file_uploader():
st.markdown("""
<div class="file-upload-container">
<div class="file-upload-icon">π</div>
<div class="file-upload-text">
Drag and Drop or <span class="file-upload-browse">Browse Files</span>
</div>
<small>Supports CSV, XLS, XLSX</small>
</div>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader(
"Upload Dataset",
type=["csv", "xls", "xlsx"],
label_visibility="collapsed"
)
return uploaded_file
# Main Streamlit App
def main():
# Custom CSS for enhanced styling
st.markdown("""
<style>
.stApp {
background-color: #f0f2f6;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.stTitle {
color: #2C3E50;
text-align: center;
margin-bottom: 30px;
}
.stMarkdown {
color: #34495E;
}
.stButton>button {
background-color: #3498DB;
color: white;
border: none;
border-radius: 6px;
padding: 10px 20px;
transition: all 0.3s ease;
}
.stButton>button:hover {
background-color: #2980B9;
transform: scale(1.05);
}
.sidebar .sidebar-content {
background-color: #FFFFFF;
border-radius: 10px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.file-upload-container {
border: 2px dashed #3498DB;
border-radius: 10px;
padding: 30px;
text-align: center;
background-color: #FFFFFF;
transition: all 0.3s ease;
}
.file-upload-container:hover {
border-color: #2980B9;
background-color: #F1F8FF;
}
.file-upload-icon {
font-size: 50px;
color: #3498DB;
margin-bottom: 15px;
}
.file-upload-text {
color: #2C3E50;
font-size: 18px;
}
.file-upload-browse {
color: #3498DB;
font-weight: bold;
}
</style>
""", unsafe_allow_html=True)
# App Title
st.markdown("<h1 class='stTitle'>π RAG Evaluation Toolkit</h1>", unsafe_allow_html=True)
# Sidebar for Configuration
st.sidebar.header("π Evaluation Configuration")
# API Key Input with improved styling
st.sidebar.subheader("OpenAI API Key")
openai_api_key = st.sidebar.text_input(
"Enter your OpenAI API Key",
type="password",
help="Required for running evaluations"
)
# File Upload Section
st.markdown("### π Upload Your Dataset")
uploaded_file = custom_file_uploader()
# Evaluation Type Selection
st.sidebar.subheader("π Evaluation Methods")
evaluation_methods = {
"Phoenix Evaluation": [
"hallucination",
"toxicity",
"relevance",
"Q&A"
],
"RAGAS Evaluation": [
"answer_correctness",
"answer_relevancy",
"faithfulness",
"context_precision",
"context_recall",
"context_relevancy",
"answer_similarity"
],
"Traditional Metrics": [
"BLEU",
"ROUGE-1",
"BERT Score",
"Perplexity",
"Diversity",
"Racial Bias"
]
}
# Multiselect for each evaluation method
selected_metrics = {}
for method, metrics in evaluation_methods.items():
if st.sidebar.checkbox(method):
selected_metrics[method] = st.sidebar.multiselect(
f"Select {method} Metrics",
metrics
)
# Evaluation Button
if uploaded_file and openai_api_key and selected_metrics:
if st.button("π Run Evaluation"):
# Load data
file_extension = os.path.splitext(uploaded_file.name)[1]
if file_extension.lower() == ".csv":
df = pd.read_csv(uploaded_file)
elif file_extension.lower() in [".xls", ".xlsx"]:
df = pd.read_excel(uploaded_file)
# Combine results
combined_results = pd.DataFrame()
# Progress bar
progress_bar = st.progress(0)
# Run evaluations
with st.spinner("Processing evaluations..."):
# Phoenix Evaluation
if "Phoenix Evaluation" in selected_metrics:
progress_bar.progress(33)
phoenix_results = phoenix_eval(
selected_metrics.get("Phoenix Evaluation", []),
openai_api_key,
df.copy()
)
combined_results = pd.concat([combined_results, phoenix_results], axis=1)
# RAGAS Evaluation
if "RAGAS Evaluation" in selected_metrics:
progress_bar.progress(66)
ragas_results = ragas_eval(
selected_metrics.get("RAGAS Evaluation", []),
openai_api_key,
df.copy()
)
combined_results = pd.concat([combined_results, ragas_results], axis=1)
# Traditional Metrics Evaluation
if "Traditional Metrics" in selected_metrics:
progress_bar.progress(100)
traditional_results = RAGEvaluator(
df=df.copy(),
selected_metrics=selected_metrics.get("Traditional Metrics", [])
)
combined_results = pd.concat([combined_results, traditional_results], axis=1)
# Save results
results_filename = "rag_evaluation_results.xlsx"
combined_results.to_excel(results_filename, index=False)
# Success message and download button
st.success("Evaluation Completed Successfully!")
# Create download button with improved styling
with open(results_filename, "rb") as file:
btn = st.download_button(
label="π₯ Download Evaluation Results",
data=file,
file_name=results_filename,
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
)
# Display results preview
st.markdown("### π Results Preview")
st.dataframe(combined_results)
# Run the app
if __name__ == "__main__":
main() |