File size: 7,655 Bytes
4f5540c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import os, pickle
import numpy as np
import pandas as pd

from polymerlearn.utils.graph_prep import get_AG_info, list_mask
from sklearn.model_selection import cross_val_score, train_test_split, KFold
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score as R2, mean_absolute_error as MAE
from sklearn.utils import shuffle

base_rep_dir = os.path.join('../../..',
    'Representations')

def load_pickle(dir, mol_name):
    f = os.path.join(dir, mol_name.lower() + '.pickle')
    rep = pickle.load(open(f, 'rb'))

    return rep

class RepDataset:
    def __init__(self,
            data,
            Y_target, 
            rep_dir = base_rep_dir,
            add_features = None,
            ac = (20,33),
            gc = (34,46),
            #test_size = 0.25,
            rep = 'CM',
            standard_scale = False,
            device = None
        ):

        self.add_features = add_features
        self.standard_scale = standard_scale
        self.device = device

        rep = rep.upper()
        assert rep in ['CM', 'MBTR', 'SOAP', 'PI'], "Representation must be in ['CM', 'MBTR', 'SOAP']"

        Y = data.loc[:,Y_target]
        non_nan_mask = Y.notna()
        if type(Y_target) == list:
            assert Y_target.index('IV') < Y_target.index('Tg'), 'IV must come before Tg'
            non_nan_mask['res_bool'] = False
            non_nan_mask.loc[non_nan_mask[Y_target].all(1), 'res_bool'] = True
            non_nan_mask = non_nan_mask['res_bool'].values
        
        self.Y = Y[non_nan_mask].values # Get Y values
        self.data = data.loc[non_nan_mask,:]

        self.acid_included, self.glycol_included, self.acid_pcts, self.glycol_pcts = \
            get_AG_info(self.data, ac, gc)

        if self.add_features is not None:
            self.add_features = list_mask(self.add_features, list(non_nan_mask))

        # Get entire dataset:
        # Structure: [([A, A], [G]), ..., ([A, A, A], [G, G, G, G])]
        #   len == length of dataset for this value

        dirlook = os.path.join(rep_dir, rep, 'AG')

        self.dataset = []
        max_size = 0
        for A, G in zip(self.acid_included, self.glycol_included):
            Asamples = [load_pickle(dirlook, a).flatten()  for a in A]
            Gsamples = [load_pickle(dirlook, g).flatten()  for g in G]

            Asizes = [A.shape[0] for A in Asamples]
            Gsizes = [G.shape[0] for G in Gsamples]

            max_size = max(max(Asizes), max(Gsizes), max_size)

            self.dataset.append((Asamples, Gsamples))

        # Pad all representations with the size of the largest in either grouping
        for i in range(len(self.dataset)):
            for j in range(len(self.dataset[i])):
                for k in range(len(self.dataset[i][j])):
                    cshape = self.dataset[i][j][k].shape[0]
                    self.dataset[i][j][k] = \
                        np.concatenate([self.dataset[i][j][k], np.zeros(max_size - cshape)])

        self.size_AG = max_size * 2

    def pool_dataset(self, pool_method = np.max, as_torch = False):
        # Go through and pool each
        pooled = []
        i = 0
        for A, G in self.dataset:
            poolA = np.max(np.stack(A), axis = 0)
            poolG = np.max(np.stack(G), axis = 0)
            if self.add_features is not None:
                toconcat_list = [poolA.flatten(), poolG.flatten(), self.add_features[i]]
            else:
                toconcat_list = [poolA.flatten(), poolG.flatten()]
            pooled.append(np.concatenate(toconcat_list))

            i += 1

        P = np.asarray(pooled)

        if as_torch:
            return torch.from_numpy(P).to(self.device)
        
        return P # If not returning torch

    def cross_val_predict(self, 
            model, 
            pool_method = np.sum, 
            verbose = 0, 
            shuf = True, 
            folds = 5):
        X = self.pool_dataset(pool_method)

        if shuf:
            X, y = shuffle(X, self.Y)
        else:
            y = self.Y

        kf = KFold(n_splits = folds)

        r2_scores = []
        mae_scores = []

        for train_idx, test_idx in kf.split(X):
            #print(train_idx)
            X_train, X_test = X[train_idx], X[test_idx]
            y_train, y_test = y[train_idx], y[test_idx]

            if self.standard_scale:
                endlen = np.asarray(self.add_features).shape[1]
                # Scale only additional values:
                ss = StandardScaler().fit(np.array(X_train[:,-endlen:]))
                X_train[:,-endlen:] = ss.transform(X_train[:,-endlen:])
                X_test[:,-endlen:] = ss.transform(X_test[:,-endlen:])

            #M = model.copy()

            model.fit(X_train, y_train)

            yhat = model.predict(X_test)
            r2_scores.append(R2(y_test, yhat))
            mae_scores.append(MAE(y_test, yhat))

        #r2_scores = cross_val_score(model, X, y, verbose = verbose, scoring = 'r2')
        #mae_scores = -1.0 * cross_val_score(model, X, y, verbose = verbose, scoring = 'neg_mean_absolute_error')
        #scores = cross_val

        return r2_scores, mae_scores

    def __len__(self):
        # Sum size of both A and G along with add_features
        add_f = len(self.add_features[0])
        return add_f + self.size_AG

    def Kfold_CV(self, folds, pool_method = np.max):
        
        X = self.pool_dataset(pool_method)
        y = self.Y
        #y = torch.from_numpy(self.Y).to(self.device)
        kfold = KFold(n_splits=folds, shuffle = True)

        for train_idx, test_idx in kfold.split(X):
            X_train, X_test = X[train_idx], X[test_idx]
            y_train, y_test = y[train_idx], y[test_idx]  

            if self.standard_scale:
                endlen = np.asarray(self.add_features).shape[1]
                # Scale only additional values:
                ss = StandardScaler().fit(X_train[:,-endlen:])
                X_train[:,-endlen:] = ss.transform(X_train[:,-endlen:])
                X_test[:,-endlen:] = ss.transform(X_test[:,-endlen:])

            yield torch.from_numpy(X_train).float(), \
                torch.from_numpy(X_test).float(), \
                torch.from_numpy(y_train).float(), \
                torch.from_numpy(y_test).float(), \
                torch.from_numpy(train_idx).float(), \
                torch.from_numpy(test_idx).float()    


def test_dataset():
    data = pd.read_csv('../../../dataset/pub_data.csv')
    dataset = RepDataset(data, Y_target = 'IV', rep = 'SOAP')

    X = dataset.pool_dataset()

    print(X[0])
    print(X[0].shape)

def test_cv():
    from polymerlearn.utils.train_graphs import get_IV_add
    data = pd.read_csv('../../../dataset/pub_data.csv')
    to_add = get_IV_add(data)
    dataset = RepDataset(data, Y_target = 'IV', rep = 'SOAP', add_features=to_add)

    from sklearn.ensemble import RandomForestRegressor
    #from sklearn.neural_network import MLPRegressor

    # model = MLPRegressor(
    #     hidden_layer_sizes=(128, 128, 64),
    #     solver = 'adam',
    #     learning_rate_init = 0.001,
    #     batch_size = 32,
    #     max_iter = 500
    # )

    model = RandomForestRegressor()
    scores = dataset.cross_val_predict(model, verbose = 2)

    print(np.mean(scores))

def test_joint():
    from polymerlearn.utils.train_graphs import get_IV_add
    data = pd.read_csv('../../../dataset/pub_data.csv')
    to_add = get_IV_add(data)
    dataset = RepDataset(data, Y_target = ['IV', 'Tg'], rep = 'SOAP', add_features=to_add)

    print(dataset.Y)

if __name__ == '__main__':
    #test_dataset()
    test_joint()