Spaces:
Runtime error
Runtime error
File size: 15,318 Bytes
69fcc0d 69cafe9 69fcc0d ed7ba6f 69fcc0d ed7ba6f 69fcc0d ed7ba6f 69fcc0d ed7ba6f 69fcc0d ed7ba6f 69fcc0d ed7ba6f 69fcc0d ed7ba6f 69fcc0d 592276d 69fcc0d ed7ba6f 69fcc0d ed7ba6f 69fcc0d 9b86f8d 69fcc0d ed7ba6f 69fcc0d a30cf63 ed7ba6f d0a48c5 69fcc0d 74a631b e4d4d36 c533659 f618da0 74a631b 031aefe a3639a3 bb8af5e 2b54252 a3639a3 0b2163b a3639a3 031aefe a3639a3 2b54252 a3639a3 031aefe d2a82e9 a3639a3 031aefe d2a82e9 a3639a3 031aefe a3639a3 2b54252 a3639a3 929f03c a3639a3 c9e11c2 e4d4d36 c9e11c2 a3639a3 980e558 a3639a3 febc2e9 a3639a3 648000c 69fcc0d 980e558 69fcc0d 8c63913 69fcc0d 8c63913 1729115 8c63913 69fcc0d 8c63913 69fcc0d 56aa34d 11bd680 69fcc0d 51bb97c fbfc430 1745adf 69fcc0d 5412e88 e747ad9 648000c 5412e88 80ae9dd a86f0ed 69fcc0d 980e558 69fcc0d be7f647 69fcc0d 648000c 69fcc0d a30cf63 69fcc0d 648000c 69fcc0d a30cf63 69fcc0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools
import GPyOpt
# Unique phase elements
# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write
# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"
scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
'PROPERTY: HV': (107.0, 1183.0),
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
input_cols = {
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
"Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
"Choose between Single (S), Multiphase (M) and other (OTHER)",
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
"Choose between BCC, FCC and other ",
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
"Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
"Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}
def process_microstructure(list_phases):
permutations = list(itertools.permutations(list_phases))
permutations_strings = [str('+'.join(list(e))) for e in permutations]
for e in permutations_strings:
if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
return e
return 'OTHER'
def write_logs(message, message_type="Prediction"):
"""
Write logs
"""
#with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
# with open(dataset_path, "a") as csvfile:
# writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
# writer.writerow(
# {"name": message_type, "message": message, "time": str(datetime.now())}
# )
return
def predict(x, request: gr.Request):
"""
Predict the hardness and yield strength using the ML model. Input data is a dataframe
"""
loaded_model = tf.keras.models.load_model("hardness.h5")
print("summary is", loaded_model.summary())
#x = x.replace("", 0)
x = np.asarray(x).astype("float32")
y = loaded_model.predict(x)
y_hardness = y[0][0]
y_ys = y[0][1]
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
print("Prediction is ", y)
if request is not None: # Verify if request is not None (when building the app the first request is None)
message = f"{request.username}_{request.client.host}"
print("MESSAGE")
print(message)
res = write_logs(message)
#interpret_fig = utils.interpret(x)
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
"""
Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
"""
input_tuple = (in1, in2, in3, in4, in5)
formula = utils.normalize_and_alphabetize_formula(in1)
density = utils.calculate_density(formula)
young_modulus = utils.calculate_youngs_modulus(formula)
input_dict = {}
in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
input_dict['PROPERTY: Processing method'] = [int(in4)]
in5 = process_microstructure(in5)
in5 = input_mapping['PROPERTY: Microstructure'][in5]
input_dict['PROPERTY: Microstructure'] = [int(in5)]
density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
density = (density-density_scaling_factors[0])/(
density_scaling_factors[1]-density_scaling_factors[0])
input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]
ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
young_modulus = (young_modulus-ym_scaling_factors[0])/(
ym_scaling_factors[1]-ym_scaling_factors[0])
input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]
input_df = pd.DataFrame.from_dict(input_dict)
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
print("One hot columns are ", one_hot.columns)
return predict(one_hot, request)
def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request):
predictions = predict(x, request)
error_hardness = np.sqrt(np.square(predictions[0]-float(hardness_target)))
error_ys = np.sqrt(np.square(predictions[2]-float(ys_target)))
print("Optimization step is ", predictions, float(hardness_target), float(ys_target),
error_hardness, error_ys)
return error_hardness + error_ys
def predict_inverse(hardness_target, ys_target, formula, request: gr.Request):
one_hot_columns = utils.return_feature_names()
continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
'PROPERTY: Calculated Young modulus (GPa)']
categorical_variables = list(one_hot_columns)
for c in continuous_variables:
categorical_variables.remove(c)
fixed_density = utils.calculate_density(str(formula))
fixed_ym = utils.calculate_youngs_modulus(str(formula))
domain = []
for c in one_hot_columns:
if c in continuous_variables:
if c == continuous_variables[0]:
domain_density = (fixed_density-scaling_factors[c][0])/(
scaling_factors[c][1]-scaling_factors[c][0])
domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_density, domain_density)})#(0.,1.)})
else:
domain_ym = (fixed_ym-scaling_factors[c][0])/(
scaling_factors[c][1]-scaling_factors[c][0])
domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_ym, domain_ym)})#(0.,1.)})
else:
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
print("Domain is ", domain)
constraints = []
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']
for constraint in constrained_columns:
sum_string = ''
for i in range (len(one_hot_columns)):
column_one_hot = one_hot_columns[i]
if column_one_hot.startswith(constraint):
sum_string = sum_string+"+x[:," + str(i) + "]"
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
def fit_outputs(x):
return fit_outputs_constraints(x, hardness_target, ys_target, request)
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
domain = domain, # box-constraints of the problem
constraints = constraints,
acquisition_type ='LCB', # LCB acquisition
acquisition_weight = 0.1) # Exploration exploitation
# it may take a few seconds
opt.run_optimization(max_iter=20)
opt.plot_convergence()
x_best = opt.X[np.argmin(opt.Y)]
best_params = dict(zip(
[el['name'] for el in domain],
[[x] for x in x_best]))
optimized_x = pd.DataFrame.from_dict(best_params)
#for c in optimized_x.columns:
# if c in continuous_variables:
# optimized_x[c]=optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0]
optimized_x = optimized_x[['PROPERTY: Calculated Density (g/cm$^3$)',
'PROPERTY: Calculated Young modulus (GPa)',
'Preprocessing method ANNEAL',
'Preprocessing method CAST', 'Preprocessing method OTHER',
'Preprocessing method POWDER', 'Preprocessing method WROUGHT',
'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER',
'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']]
result = optimized_x
result = result[result>0.0].dropna(axis=1)
return list(result.keys())[2:]
example_inputs = ["Al0.25 Co1 Fe1 Ni1", 820, 1800]
css_styling = """#submit {background: #1eccd8}
#submit:hover {background: #a2f1f6}
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""
light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only
c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode
c200="#a1c6db", # Component borders
c300="#FFFFFF", #
c400="#e4f3fa", # Footer text
c500="#0c1538", # Text of component headers in light mode only
c600="#a1c6db", # Top corner of button in dark mode
c700="#475383", # Button text in light mode + component borders in dark mode
c800="#0c1538", # Markdown text in light mode
c900="#a1c6db", # Background of dataframe - dark mode
c950="#0c1538") # Background in dark mode only
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors)
page_title = "Alloys' hardness and yield strength prediction"
favicon_path = "osiumai_favicon.ico"
logo_path = "osiumai_logo.jpg"
html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
<img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""
with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
#gr.HTML(html)
gr.Markdown("# <p style='text-align: center;'>Get optimal alloy recommendations based on your target performance</p>")
gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength")
with gr.Row():
clear_button = gr.Button("Clear")
prediction_button = gr.Button("Predict", elem_id="submit")
with gr.Row():
with gr.Column():
gr.Markdown("### Your alloy formula")
formula = gr.Text(label = "Alloy formula")
gr.Markdown("### The target performance of your alloy")
input_hardness = gr.Text(label="Enter your target hardness (in HV)")
input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("### Your optimal microstructure and processing conditions")
#optimal_parameters = gr.DataFrame(label="Optimal parameters", wrap=True)
with gr.Column():
param1 = gr.Text(label="Processing method")
with gr.Column():
param2 = gr.Text(label="Microstructure")
with gr.Column():
param3 = gr.Text(label="Phase")
#with gr.Row():
#with gr.Column():
#with gr.Row():
# gr.Markdown("### Interpretation of hardness prediction")
# gr.Markdown("### Interpretation of yield strength prediction")
#with gr.Row():
# output_interpretation = gr.Plot(label="Interpretation")
with gr.Row():
gr.Examples([example_inputs], [formula, input_hardness, input_yield_strength])
prediction_button.click(
fn=predict_inverse,
inputs=[input_hardness, input_yield_strength, formula],
outputs=[
param1,
param2,
param3,
],
show_progress=True,
)
clear_button.click(
lambda x: [gr.update(value=None)] * 6,
[],
[
param1,
param2,
param3,
input_hardness,
input_yield_strength,
formula
],
)
if __name__ == "__main__":
demo.queue(concurrency_count=2)
demo.launch() |