File size: 20,223 Bytes
2c2a2e1
 
 
 
b287f62
 
 
2c2a2e1
0a4265e
b287f62
 
 
 
 
 
 
 
 
 
 
2c2a2e1
 
 
0a4265e
 
0b06f90
0a4265e
bd048a0
2c2a2e1
 
0a4265e
 
0b06f90
 
0a4265e
0b06f90
0a4265e
 
0b06f90
0a4265e
0b06f90
0a4265e
0b06f90
0a4265e
0b06f90
 
 
 
 
0a4265e
 
 
 
 
 
 
 
2c2a2e1
 
b287f62
 
 
 
2c2a2e1
b287f62
 
2c2a2e1
b287f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2a2e1
b287f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2a2e1
b287f62
 
 
 
 
2c2a2e1
b287f62
2c2a2e1
b287f62
 
 
 
 
 
1321bba
b287f62
 
 
 
 
 
 
 
 
2c2a2e1
b287f62
 
 
 
 
 
2c2a2e1
b287f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2a2e1
b287f62
2c2a2e1
 
 
 
 
b287f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2a2e1
b287f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c2a2e1
 
b287f62
 
2c2a2e1
 
 
b287f62
 
 
 
 
 
 
 
 
 
6e95fac
b287f62
 
 
 
1321bba
2c2a2e1
 
 
b287f62
2c2a2e1
b287f62
0a4265e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import gradio as gr
import torch
import random
from unidecode import unidecode
import re
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
from transformers import GPT2Model, GPT2LMHeadModel, PreTrainedModel

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PATCH_LENGTH = 128      # Patch Length
PATCH_SIZE = 32       # Patch Size

PATCH_NUM_LAYERS = 9         # Number of layers in the encoder
CHAR_NUM_LAYERS = 3          # Number of layers in the decoder

NUM_EPOCHS = 32                 # Number of epochs to train for (if early stopping doesn't intervene)
LEARNING_RATE = 5e-5            # Learning rate for the optimizer
PATCH_SAMPLING_BATCH_SIZE = 0   # Batch size for patch during training, 0 for full context
LOAD_FROM_CHECKPOINT = False     # Whether to load weights from a checkpoint
SHARE_WEIGHTS = False            # Whether to share weights between the encoder and decoder

description = """
<div>

<a style="display:inline-block" href='https://github.com/sander-wood/tunesformer'><img src='https://img.shields.io/github/stars/sander-wood/tunesformer?style=social' /></a>
<a style="display:inline-block" href="https://huggingface.co/datasets/sander-wood/irishman"><img src="https://img.shields.io/badge/huggingface-dataset-ffcc66.svg"></a>
<a style="display:inline-block" href="https://arxiv.org/pdf/2301.02884.pdf"><img src="https://img.shields.io/badge/arXiv-2301.02884-b31b1b.svg"></a>
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/sander-wood/tunesformer?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md-dark.svg" alt="Duplicate Space"></a>
</div>

## ℹ️ How to use this demo?
1. Enter the control codes to set the musical form of the generated music. For details, please refer to the below "Control Codes" section. (optional)
2. Enter the prompt of the generated music. You can set the control codes to set the musical form, ABC header (i.e., note length, tempo, meter, and key) and the motif of the melody. (optional)
2. You can set the parameters (i.e., number of tunes, maximum patch, top-p, top-k, temperature, random seed and show control code) for the generation. (optional)
3. Click "Submit" and wait for the result.
4. The generated ABC notation can be played or edited using [EasyABC]([ABC Sheet Music Editor - EasyABC](https://easyabc.sourceforge.net/), you can also use this [Online ABC Player](https://abc.rectanglered.com/) to render the tune.

## 📝 Control Codes
Inspired by [CTRL](https://huggingface.co/ctrl), we incorporate control codes into TunesFormer to represent musical forms. These codes, positioned ahead of the ABC notation, enable users to specify the structures of the generated tunes. The following control codes are introduced:

- **S:number of sections**: determines the number of sections in the entire melody. It counts on several symbols that can be used to represent section boundaries: `[|`, `||`, `|]`, `|:`, `::`, and `:|`. In our dataset, the range is 1 to 8 (e.g., `S:1` for a single-section melody, and `S:8` for a melody with eight sections).

- **B:number of bars**: specifies the desired number of bars within a section. It counts on the bar symbol `|`. In our dataset, the range is 1 to 32 (e.g., `B:1` for a one-bar section, and `B:32` for a section with 32 bars).

- **E:edit distance similarity**: controls the similarity level between the current section $c$ and a previous section $p$ in the melody. It is based on the Levenshtein distance $lev(c,p)$ , quantifying the difference between sections for creating variations or contrasts. Mathematically, it can be expressed as:
  ```
  eds(c,p) = 1 - lev(c,p) / max(|c|,|p|)
  ```
  where $|c|$ and $|p|$ are the string lengths of the two sections. It is discretized into 11 levels, ranging from no match at all to an exact match (e.g., `E:0` for no similarity, and `E:10` for an exact match).

## ❕Notice
- If the prefix is given, you must also provide the control codes.
- The order of the ABC header cannot be changed (i.e., note length, tempo, meter, and key), and also do not support other headers (e.g., composer, title, etc.) as they are not used in the model. For details, please refer to the official [ABC notation](https://abcnotation.com/wiki/abc:standard:v2.1#description_of_information_fields).
- The demo is based on GPT2-small and trained from scratch on the [Massive ABC Notation Dataset](https://huggingface.co/datasets/sander-wood/massive_abcnotation_dataset).
- The demo is still in the early stage, and the generated music is not perfect. If you have any suggestions, please feel free to contact me via [email](mailto:shangda@mail.ccom.edu.cn).


"""

class Patchilizer:
    """
    A class for converting music bars to patches and vice versa. 
    """
    def __init__(self):
        self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
        self.regexPattern = '(' + '|'.join(map(re.escape, self.delimiters)) + ')'
        self.pad_token_id = 0
        self.bos_token_id = 1
        self.eos_token_id = 2

    def split_bars(self, body):
        """
        Split a body of music into individual bars.
        """
        bars = re.split(self.regexPattern, ''.join(body))
        bars = list(filter(None, bars))  # remove empty strings
        if bars[0] in self.delimiters:
            bars[1] = bars[0] + bars[1]
            bars = bars[1:]
        bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
        return bars
    
    def bar2patch(self, bar, patch_size=PATCH_SIZE):
        """
        Convert a bar into a patch of specified length.
        """
        patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
        patch = patch[:patch_size]
        patch += [self.pad_token_id] * (patch_size - len(patch))
        return patch
    
    def patch2bar(self, patch):
        """
        Convert a patch into a bar.
        """
        return ''.join(chr(idx) if idx > self.eos_token_id else '' for idx in patch if idx != self.eos_token_id)

    def encode(self, abc_code, patch_length=PATCH_LENGTH, patch_size=PATCH_SIZE, add_special_patches=False):
        """
        Encode music into patches of specified length.
        """
        lines = unidecode(abc_code).split('\n')
        lines = list(filter(None, lines))  # remove empty lines

        body = ""
        patches = []

        for line in lines:
            if len(line) > 1 and ((line[0].isalpha() and line[1] == ':') or line.startswith('%%score')):
                if body:
                    bars = self.split_bars(body)
                    patches.extend(self.bar2patch(bar + '\n' if idx == len(bars) - 1 else bar, patch_size) 
                                   for idx, bar in enumerate(bars))
                    body = ""
                patches.append(self.bar2patch(line + '\n', patch_size))
            else:
                body += line + '\n'

        if body:
            patches.extend(self.bar2patch(bar, patch_size) for bar in self.split_bars(body))

        if add_special_patches:
            bos_patch = [self.bos_token_id] * (patch_size-1) + [self.eos_token_id]
            eos_patch = [self.bos_token_id] + [self.eos_token_id] * (patch_size-1)
            patches = [bos_patch] + patches + [eos_patch]

        return patches[:patch_length]

    def decode(self, patches):
        """
        Decode patches into music.
        """
        return ''.join(self.patch2bar(patch) for patch in patches)

class PatchLevelDecoder(PreTrainedModel):
    """
    An Patch-level Decoder model for generating patch features in an auto-regressive manner. 
    It inherits PreTrainedModel from transformers.
    """

    def __init__(self, config):
        super().__init__(config)
        self.patch_embedding = torch.nn.Linear(PATCH_SIZE * 128, config.n_embd)
        torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
        self.base = GPT2Model(config)

    def forward(self, patches: torch.Tensor) -> torch.Tensor:
        """
        The forward pass of the patch-level decoder model.
        :param patches: the patches to be encoded
        :return: the encoded patches
        """
        patches = torch.nn.functional.one_hot(patches, num_classes=128).float()
        patches = patches.reshape(len(patches), -1, PATCH_SIZE * 128)
        patches = self.patch_embedding(patches.to(self.device))

        return self.base(inputs_embeds=patches)

class CharLevelDecoder(PreTrainedModel):
    """
    A Char-level Decoder model for generating the characters within each bar patch sequentially. 
    It inherits PreTrainedModel from transformers.
    """
    def __init__(self, config):
        super().__init__(config)
        self.pad_token_id = 0
        self.bos_token_id = 1
        self.eos_token_id = 2
        self.base = GPT2LMHeadModel(config)

    def forward(self, encoded_patches: torch.Tensor, target_patches: torch.Tensor, patch_sampling_batch_size: int):
        """
        The forward pass of the char-level decoder model.
        :param encoded_patches: the encoded patches
        :param target_patches: the target patches
        :return: the decoded patches
        """
        # preparing the labels for model training
        target_masks = target_patches == self.pad_token_id
        labels = target_patches.clone().masked_fill_(target_masks, -100)

        # masking the labels for model training
        target_masks = torch.ones_like(labels)
        target_masks = target_masks.masked_fill_(labels == -100, 0)

        # select patches
        if patch_sampling_batch_size!=0 and patch_sampling_batch_size<target_patches.shape[0]:
            indices = list(range(len(target_patches)))
            random.shuffle(indices)
            selected_indices = sorted(indices[:patch_sampling_batch_size])

            target_patches = target_patches[selected_indices,:]
            target_masks = target_masks[selected_indices,:]
            encoded_patches = encoded_patches[selected_indices,:]
            labels = labels[selected_indices,:]

        # get input embeddings
        inputs_embeds = torch.nn.functional.embedding(target_patches, self.base.transformer.wte.weight)

        # concatenate the encoded patches with the input embeddings
        inputs_embeds = torch.cat((encoded_patches.unsqueeze(1), inputs_embeds[:,1:,:]), dim=1)

        return self.base(inputs_embeds=inputs_embeds,
                         attention_mask=target_masks,
                         labels=labels)

    def generate(self, encoded_patch: torch.Tensor, tokens: torch.Tensor):
        """
        The generate function for generating a patch based on the encoded patch and already generated tokens.
        :param encoded_patch: the encoded patch
        :param tokens: already generated tokens in the patch
        :return: the probability distribution of next token
        """
        encoded_patch = encoded_patch.reshape(1, 1, -1)
        tokens = tokens.reshape(1, -1)

        # Get input embeddings
        tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)

        # Concatenate the encoded patch with the input embeddings
        tokens = torch.cat((encoded_patch, tokens[:,1:,:]), dim=1)
        
        # Get output from model
        outputs = self.base(inputs_embeds=tokens)
        
        # Get probabilities of next token
        probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)

        return probs

class TunesFormer(PreTrainedModel):
    """
    TunesFormer is a hierarchical music generation model based on bar patching. 
    It includes a patch-level decoder and a character-level decoder.
    It inherits PreTrainedModel from transformers.
    """

    def __init__(self, encoder_config, decoder_config, share_weights=False):
        super().__init__(encoder_config)
        self.pad_token_id = 0
        self.bos_token_id = 1
        self.eos_token_id = 2
        if share_weights:
            max_layers = max(encoder_config.num_hidden_layers, decoder_config.num_hidden_layers)
            max_context_size = max(encoder_config.max_length, decoder_config.max_length)
            max_position_embeddings = max(encoder_config.max_position_embeddings, decoder_config.max_position_embeddings)

            encoder_config.num_hidden_layers = max_layers
            encoder_config.max_length = max_context_size
            encoder_config.max_position_embeddings = max_position_embeddings
            decoder_config.num_hidden_layers = max_layers
            decoder_config.max_length = max_context_size
            decoder_config.max_position_embeddings = max_position_embeddings

        self.patch_level_decoder = PatchLevelDecoder(encoder_config)
        self.char_level_decoder = CharLevelDecoder(decoder_config)

        if share_weights:
            self.patch_level_decoder.base = self.char_level_decoder.base.transformer

    def forward(self, patches: torch.Tensor, patch_sampling_batch_size: int=PATCH_SAMPLING_BATCH_SIZE):
        """
        The forward pass of the TunesFormer model.
        :param patches: the patches to be both encoded and decoded
        :return: the decoded patches
        """
        patches = patches.reshape(len(patches), -1, PATCH_SIZE)
        encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
        
        return self.char_level_decoder(encoded_patches.squeeze(0)[:-1, :], patches.squeeze(0)[1:, :], patch_sampling_batch_size)

    def generate(self, patches: torch.Tensor,
                 tokens: torch.Tensor,
                 top_p: float=1,
                 top_k: int=0,
                 temperature: float=1,
                 seed: int=None):
        """
        The generate function for generating patches based on patches.
        :param patches: the patches to be encoded
        :return: the generated patches
        """
        patches = patches.reshape(len(patches), -1, PATCH_SIZE)
        encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
        if tokens==None:
            tokens = torch.tensor([self.bos_token_id], device=self.device)
        generated_patch = []
        random.seed(seed)

        while True:
            if seed!=None:
                n_seed = random.randint(0, 1000000)
                random.seed(n_seed)
            else:
                n_seed = None
            prob = self.char_level_decoder.generate(encoded_patches[0][-1], tokens).cpu().detach().numpy()
            prob = top_p_sampling(prob, top_p=top_p, return_probs=True)
            prob = top_k_sampling(prob, top_k=top_k, return_probs=True)
            token = temperature_sampling(prob, temperature=temperature, seed=n_seed)
            generated_patch.append(token)
            if token == self.eos_token_id or len(tokens) >= PATCH_SIZE - 1:
                break
            else:
                tokens = torch.cat((tokens, torch.tensor([token], device=self.device)), dim=0)
        
        return generated_patch, n_seed

def generate_abc(prompt, num_tunes, max_patch, top_p, top_k, temperature, seed, show_control_code):

    if torch.cuda.is_available():    
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    patchilizer = Patchilizer()

    patch_config = GPT2Config(num_hidden_layers=PATCH_NUM_LAYERS, 
                        max_length=PATCH_LENGTH, 
                        max_position_embeddings=PATCH_LENGTH,
                        vocab_size=1)
    char_config = GPT2Config(num_hidden_layers=CHAR_NUM_LAYERS, 
                        max_length=PATCH_SIZE, 
                        max_position_embeddings=PATCH_SIZE,
                        vocab_size=128)
    model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)

    filename = "weights.pth"

    if os.path.exists(filename):
        print(f"Weights already exist at '{filename}'. Loading...")
    else:
        print(f"Downloading weights to '{filename}' from huggingface.co...")
        try:
            url = 'https://huggingface.co/sander-wood/tunesformer/resolve/main/weights.pth'
            response = requests.get(url, stream=True)

            total_size = int(response.headers.get('content-length', 0))
            chunk_size = 1024

            with open(filename, 'wb') as file, tqdm(
                desc=filename,
                total=total_size,
                unit='B',
                unit_scale=True,
                unit_divisor=1024,
            ) as bar:
                for data in response.iter_content(chunk_size=chunk_size):
                    size = file.write(data)
                    bar.update(size)
        except Exception as e:
            print(f"Error: {e}")
            exit()
            
    checkpoint = torch.load('weights.pth')
    model.load_state_dict(checkpoint['model'])
    model = model.to(device)
    model.eval()

    tunes = ""

    print("\n"+" OUTPUT TUNES ".center(60, "#"))

    start_time = time.time()

    for i in range(num_tunes):
        tune = "X:"+str(i+1) + "\n" + prompt
        lines = re.split(r'(\n)', tune)
        tune = ""
        skip = False
        for line in lines:
            if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
                if not skip:
                    print(line, end="")
                    tune += line
                skip = False
            else:
                skip = True

        input_patches = torch.tensor([patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=device)
        if tune=="":
            tokens = None
        else:
            prefix = patchilizer.decode(input_patches[0])
            remaining_tokens = prompt[len(prefix):]
            tokens  = torch.tensor([patchilizer.bos_token_id]+[ord(c) for c in remaining_tokens], device=device)
        
        while input_patches.shape[1]<max_patch:
            predicted_patch, seed = model.generate(input_patches,
                                                    tokens,
                                                    top_p=top_p,
                                                    top_k=top_k,
                                                    temperature=temperature,
                                                    seed=seed)
            tokens = None
            if predicted_patch[0]!=patchilizer.eos_token_id:
                next_bar = patchilizer.decode([predicted_patch])
                if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
                    print(next_bar, end="")
                    tune += next_bar
                if next_bar=="":
                    break
                next_bar = remaining_tokens+next_bar
                remaining_tokens = ""
                predicted_patch = torch.tensor(patchilizer.bar2patch(next_bar), device=device).unsqueeze(0)
                input_patches = torch.cat([input_patches, predicted_patch.unsqueeze(0)], dim=1)
            else:
                break

        tunes += tune+"\n\n"
    
    return tunes

default_prompt = """S:2
B:9
E:4
B:9
L:1/8
M:3/4
K:D
 de |"D" """

input_prompt = gr.inputs.Textbox(lines=5, label="Prefix", default=default_prompt)
input_num_tunes = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label="Number of Tunes")
input_max_patch = gr.inputs.Slider(minimum=10, maximum=128, step=1, default=128, label="Max Patch")
input_top_p = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.05, default=0.8, label="Top P")
input_top_k = gr.inputs.Slider(minimum=1, maximum=20, step=1, default=8, label="Top K")
input_temperature = gr.inputs.Slider(minimum=0.0, maximum=2.0, step=0.05, default=1.2, label="Temperature")
input_seed = gr.inputs.Textbox(lines=1, label="Seed (int)", default="None")
output_abc = gr.outputs.Textbox(label="Generated Tunes")

gr.Interface(generate_abc,
                [input_prompt, input_num_tunes, input_max_patch, input_top_p, input_top_k, input_temperature, input_seed],
                output_abc,
            title="TunesFormer: Forming Irish Tunes with Control Codes by Bar Patching",
            description=description).launch()