Spaces:
Runtime error
Runtime error
File size: 9,125 Bytes
2c2a2e1 1321bba 2c2a2e1 6e95fac 2c2a2e1 6e95fac 1321bba 2c2a2e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import gradio as gr
import torch
import random
from unidecode import unidecode
from transformers import GPT2LMHeadModel
from samplings import top_p_sampling, temperature_sampling
device = torch.device("cpu")
description = """
<div>
<a style="display:inline-block" href='https://github.com/suno-ai/bark'><img src='https://img.shields.io/github/stars/suno-ai/bark?style=social' /></a>
<a style='display:inline-block' href='https://discord.gg/J2B2vsjKuE'><img src='https://dcbadge.vercel.app/api/server/J2B2vsjKuE?compact=true&style=flat' /></a>
<a style="display:inline-block; margin-left: 1em" href="https://huggingface.co/spaces/suno/bark?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
Bark is a universal text-to-audio model created by [Suno](www.suno.ai), with code publicly available [here](https://github.com/suno-ai/bark). \
Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. \
This demo should be used for research purposes only. Commercial use is strictly prohibited. \
The model output is not censored and the authors do not endorse the opinions in the generated content. \
Use at your own risk.
"""
article = """
## 🌎 Foreign Language
Bark supports various languages out-of-the-box and automatically determines language from input text. \
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
Try the prompt:
```
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
```
## 🤭 Non-Speech Sounds
Below is a list of some known non-speech sounds, but we are finding more every day. \
Please let us know if you find patterns that work particularly well on Discord!
* [laughter]
* [laughs]
* [sighs]
* [music]
* [gasps]
* [clears throat]
* — or ... for hesitations
* ♪ for song lyrics
* capitalization for emphasis of a word
* MAN/WOMAN: for bias towards speaker
Try the prompt:
```
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
```
## 🎶 Music
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
Try the prompt:
```
♪ In the jungle, the mighty jungle, the lion barks tonight ♪
```
## 🧬 Voice Cloning
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
The model also attempts to preserve music, ambient noise, etc. from input audio. \
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
## 👥 Speaker Prompts
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
Please note that these are not always respected, especially if a conflicting audio history prompt is given.
Try the prompt:
```
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
```
## Details
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
"""
# examples = [
# "Jazz standard in Minor key with a swing feel.",
# "Jazz standard in Major key with a fast tempo.",
# "Jazz standard in Blues form with a soulfoul melody.",
# "a painting of a starry night with the moon in the sky",
# "a green field with a blue sky and clouds",
# "a beach with a castle on top of it"
# ]
class ABCTokenizer():
def __init__(self):
self.pad_token_id = 0
self.bos_token_id = 2
self.eos_token_id = 3
self.merged_tokens = []
for i in range(8):
self.merged_tokens.append('[SECS_'+str(i+1)+']')
for i in range(32):
self.merged_tokens.append('[BARS_'+str(i+1)+']')
for i in range(11):
self.merged_tokens.append('[SIM_'+str(i)+']')
def __len__(self):
return 128+len(self.merged_tokens)
def encode(self, text):
encodings = {}
encodings['input_ids'] = torch.tensor(self.txt2ids(text, self.merged_tokens))
encodings['attention_mask'] = torch.tensor([1]*len(encodings['input_ids']))
return encodings
def decode(self, ids, skip_special_tokens=False):
txt = ""
for i in ids:
if i>=128:
if not skip_special_tokens:
txt += self.merged_tokens[i-128]
elif i!=self.bos_token_id and i!=self.eos_token_id:
txt += chr(i)
return txt
def txt2ids(self, text, merged_tokens):
ids = ["\""+str(ord(c))+"\"" for c in text]
txt_ids = ' '.join(ids)
for t_idx, token in enumerate(merged_tokens):
token_ids = ["\""+str(ord(c))+"\"" for c in token]
token_txt_ids = ' '.join(token_ids)
txt_ids = txt_ids.replace(token_txt_ids, "\""+str(t_idx+128)+"\"")
txt_ids = txt_ids.split(' ')
txt_ids = [int(i[1:-1]) for i in txt_ids]
return [self.bos_token_id]+txt_ids+[self.eos_token_id]
def generate_abc(control_codes, prefix, num_tunes, max_length, top_p, temperature, seed):
try:
seed = int(seed)
except:
seed = None
prefix = unidecode(control_codes + prefix)
tokenizer = ABCTokenizer()
model = GPT2LMHeadModel.from_pretrained('sander-wood/tunesformer').to(device)
if prefix:
ids = tokenizer.encode(prefix)['input_ids'][:-1]
else:
ids = torch.tensor([tokenizer.bos_token_id])
random.seed(seed)
tunes = ""
for c_idx in range(num_tunes):
print("\nX:"+str(c_idx+1)+"\n", end="")
print(tokenizer.decode(ids[1:], skip_special_tokens=True), end="")
input_ids = ids.unsqueeze(0)
for t_idx in range(max_length):
if seed!=None:
n_seed = random.randint(0, 1000000)
random.seed(n_seed)
else:
n_seed = None
outputs = model(input_ids=input_ids.to(device))
probs = outputs.logits[0][-1]
probs = torch.nn.Softmax(dim=-1)(probs).cpu().detach().numpy()
sampled_id = temperature_sampling(probs=top_p_sampling(probs,
top_p=top_p,
seed=n_seed,
return_probs=True),
seed=n_seed,
temperature=temperature)
input_ids = torch.cat((input_ids, torch.tensor([[sampled_id]])), 1)
if sampled_id!=tokenizer.eos_token_id:
print(tokenizer.decode([sampled_id], skip_special_tokens=True), end="")
continue
else:
tune = "X:"+str(c_idx+1)+"\n"+tokenizer.decode(input_ids.squeeze(), skip_special_tokens=True)
tunes += tune+"\n\n"
print("\n")
break
return tunes
input_control_codes = gr.inputs.Textbox(lines=5, label="Control Codes", default="[SECS_2][BARS_9][SIM_3][BARS_9]")
input_prefix = gr.inputs.Textbox(lines=5, label="Prefix", default="L:1/8\nQ:1/4=114\nM:3/4\nK:D\nde | \"D\"")
input_num_tunes = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label="Number of Tunes")
input_max_length = gr.inputs.Slider(minimum=10, maximum=1000, step=10, default=500, label="Max Length")
input_top_p = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.05, default=0.9, label="Top P")
input_temperature = gr.inputs.Slider(minimum=0.0, maximum=2.0, step=0.1, default=1.0, label="Temperature")
input_seed = gr.inputs.Textbox(lines=1, label="Seed (int)", default="None")
output_abc = gr.outputs.Textbox(label="Generated Tunes")
gr.Interface(generate_abc,
[input_control_codes, input_prefix, input_num_tunes, input_max_length, input_top_p, input_temperature, input_seed],
output_abc,
title="TunesFormer: Forming Tunes with Control Codes",
description=description,
article=article).launch()
|