Spaces:
Runtime error
Runtime error
File size: 20,429 Bytes
2c2a2e1 b287f62 3198fcb b287f62 3198fcb 2c2a2e1 0a4265e b287f62 2c2a2e1 0a4265e 0b06f90 0a4265e bd048a0 2c2a2e1 0a4265e 0b06f90 d2803de 0a4265e 0b06f90 0a4265e 0b06f90 0a4265e 0b06f90 0a4265e 0b06f90 0a4265e 0b06f90 0a4265e d2803de 0a4265e d2803de 0a4265e d2803de 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 1321bba b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 d2803de b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 2c2a2e1 b287f62 d2803de 6e95fac b287f62 1321bba 2c2a2e1 b287f62 2c2a2e1 b287f62 0a4265e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import gradio as gr
import torch
import random
from unidecode import unidecode
import re
import os
from tqdm import tqdm
import requests
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
from transformers import GPT2Config, GPT2Model, GPT2LMHeadModel, PreTrainedModel
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
PATCH_LENGTH = 128 # Patch Length
PATCH_SIZE = 32 # Patch Size
PATCH_NUM_LAYERS = 9 # Number of layers in the encoder
CHAR_NUM_LAYERS = 3 # Number of layers in the decoder
NUM_EPOCHS = 32 # Number of epochs to train for (if early stopping doesn't intervene)
LEARNING_RATE = 5e-5 # Learning rate for the optimizer
PATCH_SAMPLING_BATCH_SIZE = 0 # Batch size for patch during training, 0 for full context
LOAD_FROM_CHECKPOINT = False # Whether to load weights from a checkpoint
SHARE_WEIGHTS = False # Whether to share weights between the encoder and decoder
description = """
<div>
<a style="display:inline-block" href='https://github.com/sander-wood/tunesformer'><img src='https://img.shields.io/github/stars/sander-wood/tunesformer?style=social' /></a>
<a style="display:inline-block" href="https://huggingface.co/datasets/sander-wood/irishman"><img src="https://img.shields.io/badge/huggingface-dataset-ffcc66.svg"></a>
<a style="display:inline-block" href="https://arxiv.org/pdf/2301.02884.pdf"><img src="https://img.shields.io/badge/arXiv-2301.02884-b31b1b.svg"></a>
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/sander-wood/tunesformer?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-md-dark.svg" alt="Duplicate Space"></a>
</div>
## ℹ️ How to use this demo?
1. Enter the control codes to set the musical form of the generated music. For details, please refer to the below "Control Codes" section. (optional)
2. Enter the prompt of the generated music. You can set the control codes to set the musical form, ABC header (i.e., note length, tempo, meter, and key) and the motif of the melody. (optional)
2. You can set the parameters (i.e., number of tunes, maximum patch, top-p, top-k, temperature and random seed) for the generation. (optional)
3. Click "Submit" and wait for the result.
4. The generated ABC notation can be played or edited using [EasyABC]([ABC Sheet Music Editor - EasyABC](https://easyabc.sourceforge.net/), you can also use this [Online ABC Player](https://abc.rectanglered.com/) to render the tune.
## 📝 Control Codes
Inspired by [CTRL](https://huggingface.co/ctrl), we incorporate control codes into TunesFormer to represent musical forms. These codes, positioned ahead of the ABC notation, enable users to specify the structures of the generated tunes. The following control codes are introduced:
- **S:number of sections**: determines the number of sections in the entire melody. It counts on several symbols that can be used to represent section boundaries: `[|`, `||`, `|]`, `|:`, `::`, and `:|`. In our dataset, the range is 1 to 8 (e.g., `S:1` for a single-section melody, and `S:8` for a melody with eight sections).
- **B:number of bars**: specifies the desired number of bars within a section. It counts on the bar symbol `|`. In our dataset, the range is 1 to 32 (e.g., `B:1` for a one-bar section, and `B:32` for a section with 32 bars).
- **E:edit distance similarity**: controls the similarity level between the current section $c$ and a previous section $p$ in the melody. It is based on the Levenshtein distance $lev(c,p)$ , quantifying the difference between sections for creating variations or contrasts. Mathematically, it can be expressed as:
```
eds(c,p) = 1 - lev(c,p) / max(|c|,|p|)
```
where $|c|$ and $|p|$ are the string lengths of the two sections. It is discretized into 11 levels, ranging from no match at all to an exact match (e.g., `E:0` for no similarity, and `E:10` for an exact match).
## ❕Caution
ABC notation is a specialized notation of representing sheet music, and it follows a specific standard format. When interacting with TunesFormer, all trained ABC notation adheres to these standard formats.
If you are unfamiliar with the details of ABC notation, we strongly recommend against manually entering ABC notation. Otherwise, the model may not recognize and generate the music correctly. Inputting incorrect formats might lead to unpredictable outputs or other issues.
A general recommendation is to adjust the desired musical structure and form through control codes and ABC header, rather than directly editing the ABC notation itself.
Please make sure to operate according to the provided formats and guidelines to fully leverage the capabilities of TunesFormer and achieve a satisfying music generation experience.
"""
class Patchilizer:
"""
A class for converting music bars to patches and vice versa.
"""
def __init__(self):
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
self.regexPattern = '(' + '|'.join(map(re.escape, self.delimiters)) + ')'
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
def split_bars(self, body):
"""
Split a body of music into individual bars.
"""
bars = re.split(self.regexPattern, ''.join(body))
bars = list(filter(None, bars)) # remove empty strings
if bars[0] in self.delimiters:
bars[1] = bars[0] + bars[1]
bars = bars[1:]
bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
return bars
def bar2patch(self, bar, patch_size=PATCH_SIZE):
"""
Convert a bar into a patch of specified length.
"""
patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
patch = patch[:patch_size]
patch += [self.pad_token_id] * (patch_size - len(patch))
return patch
def patch2bar(self, patch):
"""
Convert a patch into a bar.
"""
return ''.join(chr(idx) if idx > self.eos_token_id else '' for idx in patch if idx != self.eos_token_id)
def encode(self, abc_code, patch_length=PATCH_LENGTH, patch_size=PATCH_SIZE, add_special_patches=False):
"""
Encode music into patches of specified length.
"""
lines = unidecode(abc_code).split('\n')
lines = list(filter(None, lines)) # remove empty lines
body = ""
patches = []
for line in lines:
if len(line) > 1 and ((line[0].isalpha() and line[1] == ':') or line.startswith('%%score')):
if body:
bars = self.split_bars(body)
patches.extend(self.bar2patch(bar + '\n' if idx == len(bars) - 1 else bar, patch_size)
for idx, bar in enumerate(bars))
body = ""
patches.append(self.bar2patch(line + '\n', patch_size))
else:
body += line + '\n'
if body:
patches.extend(self.bar2patch(bar, patch_size) for bar in self.split_bars(body))
if add_special_patches:
bos_patch = [self.bos_token_id] * (patch_size-1) + [self.eos_token_id]
eos_patch = [self.bos_token_id] + [self.eos_token_id] * (patch_size-1)
patches = [bos_patch] + patches + [eos_patch]
return patches[:patch_length]
def decode(self, patches):
"""
Decode patches into music.
"""
return ''.join(self.patch2bar(patch) for patch in patches)
class PatchLevelDecoder(PreTrainedModel):
"""
An Patch-level Decoder model for generating patch features in an auto-regressive manner.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.patch_embedding = torch.nn.Linear(PATCH_SIZE * 128, config.n_embd)
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
self.base = GPT2Model(config)
def forward(self, patches: torch.Tensor) -> torch.Tensor:
"""
The forward pass of the patch-level decoder model.
:param patches: the patches to be encoded
:return: the encoded patches
"""
patches = torch.nn.functional.one_hot(patches, num_classes=128).float()
patches = patches.reshape(len(patches), -1, PATCH_SIZE * 128)
patches = self.patch_embedding(patches.to(self.device))
return self.base(inputs_embeds=patches)
class CharLevelDecoder(PreTrainedModel):
"""
A Char-level Decoder model for generating the characters within each bar patch sequentially.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, config):
super().__init__(config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
self.base = GPT2LMHeadModel(config)
def forward(self, encoded_patches: torch.Tensor, target_patches: torch.Tensor, patch_sampling_batch_size: int):
"""
The forward pass of the char-level decoder model.
:param encoded_patches: the encoded patches
:param target_patches: the target patches
:return: the decoded patches
"""
# preparing the labels for model training
target_masks = target_patches == self.pad_token_id
labels = target_patches.clone().masked_fill_(target_masks, -100)
# masking the labels for model training
target_masks = torch.ones_like(labels)
target_masks = target_masks.masked_fill_(labels == -100, 0)
# select patches
if patch_sampling_batch_size!=0 and patch_sampling_batch_size<target_patches.shape[0]:
indices = list(range(len(target_patches)))
random.shuffle(indices)
selected_indices = sorted(indices[:patch_sampling_batch_size])
target_patches = target_patches[selected_indices,:]
target_masks = target_masks[selected_indices,:]
encoded_patches = encoded_patches[selected_indices,:]
labels = labels[selected_indices,:]
# get input embeddings
inputs_embeds = torch.nn.functional.embedding(target_patches, self.base.transformer.wte.weight)
# concatenate the encoded patches with the input embeddings
inputs_embeds = torch.cat((encoded_patches.unsqueeze(1), inputs_embeds[:,1:,:]), dim=1)
return self.base(inputs_embeds=inputs_embeds,
attention_mask=target_masks,
labels=labels)
def generate(self, encoded_patch: torch.Tensor, tokens: torch.Tensor):
"""
The generate function for generating a patch based on the encoded patch and already generated tokens.
:param encoded_patch: the encoded patch
:param tokens: already generated tokens in the patch
:return: the probability distribution of next token
"""
encoded_patch = encoded_patch.reshape(1, 1, -1)
tokens = tokens.reshape(1, -1)
# Get input embeddings
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
# Concatenate the encoded patch with the input embeddings
tokens = torch.cat((encoded_patch, tokens[:,1:,:]), dim=1)
# Get output from model
outputs = self.base(inputs_embeds=tokens)
# Get probabilities of next token
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
return probs
class TunesFormer(PreTrainedModel):
"""
TunesFormer is a hierarchical music generation model based on bar patching.
It includes a patch-level decoder and a character-level decoder.
It inherits PreTrainedModel from transformers.
"""
def __init__(self, encoder_config, decoder_config, share_weights=False):
super().__init__(encoder_config)
self.pad_token_id = 0
self.bos_token_id = 1
self.eos_token_id = 2
if share_weights:
max_layers = max(encoder_config.num_hidden_layers, decoder_config.num_hidden_layers)
max_context_size = max(encoder_config.max_length, decoder_config.max_length)
max_position_embeddings = max(encoder_config.max_position_embeddings, decoder_config.max_position_embeddings)
encoder_config.num_hidden_layers = max_layers
encoder_config.max_length = max_context_size
encoder_config.max_position_embeddings = max_position_embeddings
decoder_config.num_hidden_layers = max_layers
decoder_config.max_length = max_context_size
decoder_config.max_position_embeddings = max_position_embeddings
self.patch_level_decoder = PatchLevelDecoder(encoder_config)
self.char_level_decoder = CharLevelDecoder(decoder_config)
if share_weights:
self.patch_level_decoder.base = self.char_level_decoder.base.transformer
def forward(self, patches: torch.Tensor, patch_sampling_batch_size: int=PATCH_SAMPLING_BATCH_SIZE):
"""
The forward pass of the TunesFormer model.
:param patches: the patches to be both encoded and decoded
:return: the decoded patches
"""
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
return self.char_level_decoder(encoded_patches.squeeze(0)[:-1, :], patches.squeeze(0)[1:, :], patch_sampling_batch_size)
def generate(self, patches: torch.Tensor,
tokens: torch.Tensor,
top_p: float=1,
top_k: int=0,
temperature: float=1,
seed: int=None):
"""
The generate function for generating patches based on patches.
:param patches: the patches to be encoded
:return: the generated patches
"""
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
if tokens==None:
tokens = torch.tensor([self.bos_token_id], device=self.device)
generated_patch = []
random.seed(seed)
while True:
if seed!=None:
n_seed = random.randint(0, 1000000)
random.seed(n_seed)
else:
n_seed = None
prob = self.char_level_decoder.generate(encoded_patches[0][-1], tokens).cpu().detach().numpy()
prob = top_p_sampling(prob, top_p=top_p, return_probs=True)
prob = top_k_sampling(prob, top_k=top_k, return_probs=True)
token = temperature_sampling(prob, temperature=temperature, seed=n_seed)
generated_patch.append(token)
if token == self.eos_token_id or len(tokens) >= PATCH_SIZE - 1:
break
else:
tokens = torch.cat((tokens, torch.tensor([token], device=self.device)), dim=0)
return generated_patch, n_seed
def generate_abc(prompt,
num_tunes,
max_patch,
top_p,
top_k,
temperature,
seed,
show_control_code=True):
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
patchilizer = Patchilizer()
patch_config = GPT2Config(num_hidden_layers=PATCH_NUM_LAYERS,
max_length=PATCH_LENGTH,
max_position_embeddings=PATCH_LENGTH,
vocab_size=1)
char_config = GPT2Config(num_hidden_layers=CHAR_NUM_LAYERS,
max_length=PATCH_SIZE,
max_position_embeddings=PATCH_SIZE,
vocab_size=128)
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
filename = "weights.pth"
if os.path.exists(filename):
print(f"Weights already exist at '{filename}'. Loading...")
else:
print(f"Downloading weights to '{filename}' from huggingface.co...")
try:
url = 'https://huggingface.co/sander-wood/tunesformer/resolve/main/weights.pth'
response = requests.get(url, stream=True)
total_size = int(response.headers.get('content-length', 0))
chunk_size = 1024
with open(filename, 'wb') as file, tqdm(
desc=filename,
total=total_size,
unit='B',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in response.iter_content(chunk_size=chunk_size):
size = file.write(data)
bar.update(size)
except Exception as e:
print(f"Error: {e}")
exit()
checkpoint = torch.load('weights.pth')
model.load_state_dict(checkpoint['model'])
model = model.to(device)
model.eval()
tunes = ""
print("\n"+" OUTPUT TUNES ".center(60, "#"))
for i in range(num_tunes):
tune = "X:"+str(i+1) + "\n" + prompt
lines = re.split(r'(\n)', tune)
tune = ""
skip = False
for line in lines:
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
if not skip:
print(line, end="")
tune += line
skip = False
else:
skip = True
input_patches = torch.tensor([patchilizer.encode(prompt, add_special_patches=True)[:-1]], device=device)
if tune=="":
tokens = None
else:
prefix = patchilizer.decode(input_patches[0])
remaining_tokens = prompt[len(prefix):]
tokens = torch.tensor([patchilizer.bos_token_id]+[ord(c) for c in remaining_tokens], device=device)
while input_patches.shape[1]<max_patch:
predicted_patch, seed = model.generate(input_patches,
tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
seed=seed)
tokens = None
if predicted_patch[0]!=patchilizer.eos_token_id:
next_bar = patchilizer.decode([predicted_patch])
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
print(next_bar, end="")
tune += next_bar
if next_bar=="":
break
next_bar = remaining_tokens+next_bar
remaining_tokens = ""
predicted_patch = torch.tensor(patchilizer.bar2patch(next_bar), device=device).unsqueeze(0)
input_patches = torch.cat([input_patches, predicted_patch.unsqueeze(0)], dim=1)
else:
break
tunes += tune+"\n\n"
return tunes
default_prompt = """S:2
B:9
E:4
B:9
L:1/8
M:3/4
K:D
de |"D" """
input_prompt = gr.inputs.Textbox(lines=5, label="Prompt", default=default_prompt)
input_num_tunes = gr.inputs.Slider(minimum=1, maximum=10, step=1, default=1, label="Number of Tunes")
input_max_patch = gr.inputs.Slider(minimum=10, maximum=128, step=1, default=128, label="Max Patch")
input_top_p = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.05, default=0.8, label="Top P")
input_top_k = gr.inputs.Slider(minimum=1, maximum=20, step=1, default=8, label="Top K")
input_temperature = gr.inputs.Slider(minimum=0.0, maximum=2.0, step=0.05, default=1.2, label="Temperature")
input_seed = gr.inputs.Textbox(lines=1, label="Seed (int)", default="None")
output_abc = gr.outputs.Textbox(label="Generated Tunes")
gr.Interface(generate_abc,
[input_prompt, input_num_tunes, input_max_patch, input_top_p, input_top_k, input_temperature, input_seed],
output_abc,
title="TunesFormer: Forming Irish Tunes with Control Codes by Bar Patching",
description=description).launch()
|