File size: 8,962 Bytes
55f37e6
 
 
 
 
 
 
 
87c000d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55f37e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86e986
55f37e6
 
a86e986
 
 
 
 
 
 
 
 
 
 
 
55f37e6
 
 
 
a86e986
87c000d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import subprocess
import os
import gradio as gr
import json
from utils import *
from unidecode import unidecode
from transformers import AutoTokenizer

description = """
<div>
<a style="display:inline-block" href='https://github.com/suno-ai/bark'><img src='https://img.shields.io/github/stars/suno-ai/bark?style=social' /></a>
<a style='display:inline-block' href='https://discord.gg/J2B2vsjKuE'><img src='https://dcbadge.vercel.app/api/server/J2B2vsjKuE?compact=true&style=flat' /></a>
<a style="display:inline-block; margin-left: 1em" href="https://huggingface.co/spaces/suno/bark?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
Bark is a universal text-to-audio model created by [Suno](www.suno.ai), with code publicly available [here](https://github.com/suno-ai/bark). \
Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. \
This demo should be used for research purposes only. Commercial use is strictly prohibited. \
The model output is not censored and the authors do not endorse the opinions in the generated content. \
Use at your own risk.
"""

article = """
## 🌎 Foreign Language
Bark supports various languages out-of-the-box and automatically determines language from input text. \
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
Try the prompt:
```
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
```
## 🤭 Non-Speech Sounds
Below is a list of some known non-speech sounds, but we are finding more every day. \
Please let us know if you find patterns that work particularly well on Discord!
* [laughter]
* [laughs]
* [sighs]
* [music]
* [gasps]
* [clears throat]
* — or ... for hesitations
* ♪ for song lyrics
* capitalization for emphasis of a word
* MAN/WOMAN: for bias towards speaker
Try the prompt:
```
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
```
## 🎶 Music
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
Try the prompt:
```
♪ In the jungle, the mighty jungle, the lion barks tonight ♪
```
## 🧬 Voice Cloning
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
The model also attempts to preserve music, ambient noise, etc. from input audio. \
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
## 👥 Speaker Prompts
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
Please note that these are not always respected, especially if a conflicting audio history prompt is given.
Try the prompt:
```
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
```
## Details
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
"""

CLAMP_MODEL_NAME = 'clamp-small-512'
QUERY_MODAL = 'text'
KEY_MODAL = 'music'
TOP_N = 1
TEXT_MODEL_NAME = 'distilroberta-base'
TEXT_LENGTH = 128
device = torch.device("cpu")

# load CLaMP model
model = CLaMP.from_pretrained(CLAMP_MODEL_NAME)
music_length = model.config.max_length
model = model.to(device)
model.eval()

# initialize patchilizer, tokenizer, and softmax
patchilizer = MusicPatchilizer()
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
softmax = torch.nn.Softmax(dim=1)

def compute_values(Q_e, K_e, t=1):
    """
    Compute the values for the attention matrix

    Args:
        Q_e (torch.Tensor): Query embeddings
        K_e (torch.Tensor): Key embeddings
        t (float): Temperature for the softmax
    
    Returns:
        values (torch.Tensor): Values for the attention matrix
    """
    # Normalize the feature representations
    Q_e = torch.nn.functional.normalize(Q_e, dim=1)
    K_e = torch.nn.functional.normalize(K_e, dim=1)

    # Scaled pairwise cosine similarities [1, n]
    logits = torch.mm(Q_e, K_e.T) * torch.exp(torch.tensor(t))
    values = softmax(logits)
    return values.squeeze()


def encoding_data(data, modal):
    """
    Encode the data into ids

    Args:
        data (list): List of strings
        modal (str): "music" or "text"
    
    Returns:
        ids_list (list): List of ids
    """
    ids_list = []
    if modal=="music":
        for item in data:
            patches = patchilizer.encode(item, music_length=music_length, add_eos_patch=True)
            ids_list.append(torch.tensor(patches).reshape(-1))
    else:
        for item in data:
            text_encodings = tokenizer(item, 
                                        return_tensors='pt', 
                                        truncation=True, 
                                        max_length=TEXT_LENGTH)
            ids_list.append(text_encodings['input_ids'].squeeze(0))

    return ids_list


def get_features(ids_list, modal):
    """
    Get the features from the CLaMP model

    Args:
        ids_list (list): List of ids
        modal (str): "music" or "text"
    
    Returns:
        features_list (torch.Tensor): Tensor of features with a shape of (batch_size, hidden_size)
    """
    features_list = []
    print("Extracting "+modal+" features...")
    with torch.no_grad():
        for ids in tqdm(ids_list):
            ids = ids.unsqueeze(0)
            if modal=="text":
                masks = torch.tensor([1]*len(ids[0])).unsqueeze(0)
                features = model.text_enc(ids.to(device), attention_mask=masks.to(device))['last_hidden_state']
                features = model.avg_pooling(features, masks)
                features = model.text_proj(features)
            else:
                masks = torch.tensor([1]*(int(len(ids[0])/PATCH_LENGTH))).unsqueeze(0)
                features = model.music_enc(ids, masks)['last_hidden_state']
                features = model.avg_pooling(features, masks)
                features = model.music_proj(features)

            features_list.append(features[0])
    
    return torch.stack(features_list).to(device)


def semantic_music_search(query):
    """
    Semantic music search

    Args:
        query (str): Query string

    Returns:
        output (str): Search result
    """
    with open(KEY_MODAL+"_key_cache_"+str(music_length)+".pth", 'rb') as f:
        key_cache = torch.load(f)
        
    # encode query
    query_ids = encoding_data([query], QUERY_MODAL)
    query_feature = get_features(query_ids, QUERY_MODAL)

    key_filenames = key_cache["filenames"]
    key_features = key_cache["features"]

    # compute values
    values = compute_values(query_feature, key_features)
    idx = torch.argsort(values)[-1]
    filename = key_filenames[idx].split('/')[-1][:-4]

    with open("wikimusictext.json", 'r') as f:
        wikimusictext = json.load(f)

    for item in wikimusictext:
        if item['title']==filename:
            # output = "Title:\n" + item['title']+'\n\n'
            # output += "Artist:\n" + item['artist']+ '\n\n'
            # output += "Genre:\n" + item['genre']+ '\n\n'
            # output += "Description:\n" + item['text']+ '\n\n'
            # output += "ABC notation:\n" + item['music']+ '\n\n'
            return item["title"], item["artist"], item["genre"], item["text"], item["music"]

output_title = gr.outputs.Textbox(label="Title")
output_artist = gr.outputs.Textbox(label="Artist")
output_genre = gr.outputs.Textbox(label="Genre")
output_description = gr.outputs.Textbox(label="Description")
output_abc = gr.outputs.Textbox(label="ABC notation")

gr.Interface(
    fn=semantic_music_search,
    inputs=gr.Textbox(lines=2, placeholder="Describe the music you want to search..."),
    outputs=[output_title, output_artist, output_genre, output_description, output_abc],
    title="🗜️ CLaMP: Semantic Music Search",
    description=description,
    article=article).launch()