Spaces:
Runtime error
Runtime error
File size: 8,962 Bytes
55f37e6 87c000d 55f37e6 a86e986 55f37e6 a86e986 55f37e6 a86e986 87c000d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import subprocess
import os
import gradio as gr
import json
from utils import *
from unidecode import unidecode
from transformers import AutoTokenizer
description = """
<div>
<a style="display:inline-block" href='https://github.com/suno-ai/bark'><img src='https://img.shields.io/github/stars/suno-ai/bark?style=social' /></a>
<a style='display:inline-block' href='https://discord.gg/J2B2vsjKuE'><img src='https://dcbadge.vercel.app/api/server/J2B2vsjKuE?compact=true&style=flat' /></a>
<a style="display:inline-block; margin-left: 1em" href="https://huggingface.co/spaces/suno/bark?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space%20to%20skip%20the%20queue-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
</div>
Bark is a universal text-to-audio model created by [Suno](www.suno.ai), with code publicly available [here](https://github.com/suno-ai/bark). \
Bark can generate highly realistic, multilingual speech as well as other audio - including music, background noise and simple sound effects. \
This demo should be used for research purposes only. Commercial use is strictly prohibited. \
The model output is not censored and the authors do not endorse the opinions in the generated content. \
Use at your own risk.
"""
article = """
## 🌎 Foreign Language
Bark supports various languages out-of-the-box and automatically determines language from input text. \
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice.
Try the prompt:
```
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible.
```
## 🤭 Non-Speech Sounds
Below is a list of some known non-speech sounds, but we are finding more every day. \
Please let us know if you find patterns that work particularly well on Discord!
* [laughter]
* [laughs]
* [sighs]
* [music]
* [gasps]
* [clears throat]
* — or ... for hesitations
* ♪ for song lyrics
* capitalization for emphasis of a word
* MAN/WOMAN: for bias towards speaker
Try the prompt:
```
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪."
```
## 🎶 Music
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics.
Try the prompt:
```
♪ In the jungle, the mighty jungle, the lion barks tonight ♪
```
## 🧬 Voice Cloning
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \
The model also attempts to preserve music, ambient noise, etc. from input audio. \
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from.
## 👥 Speaker Prompts
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \
Please note that these are not always respected, especially if a conflicting audio history prompt is given.
Try the prompt:
```
WOMAN: I would like an oatmilk latte please.
MAN: Wow, that's expensive!
```
## Details
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark).
"""
CLAMP_MODEL_NAME = 'clamp-small-512'
QUERY_MODAL = 'text'
KEY_MODAL = 'music'
TOP_N = 1
TEXT_MODEL_NAME = 'distilroberta-base'
TEXT_LENGTH = 128
device = torch.device("cpu")
# load CLaMP model
model = CLaMP.from_pretrained(CLAMP_MODEL_NAME)
music_length = model.config.max_length
model = model.to(device)
model.eval()
# initialize patchilizer, tokenizer, and softmax
patchilizer = MusicPatchilizer()
tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_NAME)
softmax = torch.nn.Softmax(dim=1)
def compute_values(Q_e, K_e, t=1):
"""
Compute the values for the attention matrix
Args:
Q_e (torch.Tensor): Query embeddings
K_e (torch.Tensor): Key embeddings
t (float): Temperature for the softmax
Returns:
values (torch.Tensor): Values for the attention matrix
"""
# Normalize the feature representations
Q_e = torch.nn.functional.normalize(Q_e, dim=1)
K_e = torch.nn.functional.normalize(K_e, dim=1)
# Scaled pairwise cosine similarities [1, n]
logits = torch.mm(Q_e, K_e.T) * torch.exp(torch.tensor(t))
values = softmax(logits)
return values.squeeze()
def encoding_data(data, modal):
"""
Encode the data into ids
Args:
data (list): List of strings
modal (str): "music" or "text"
Returns:
ids_list (list): List of ids
"""
ids_list = []
if modal=="music":
for item in data:
patches = patchilizer.encode(item, music_length=music_length, add_eos_patch=True)
ids_list.append(torch.tensor(patches).reshape(-1))
else:
for item in data:
text_encodings = tokenizer(item,
return_tensors='pt',
truncation=True,
max_length=TEXT_LENGTH)
ids_list.append(text_encodings['input_ids'].squeeze(0))
return ids_list
def get_features(ids_list, modal):
"""
Get the features from the CLaMP model
Args:
ids_list (list): List of ids
modal (str): "music" or "text"
Returns:
features_list (torch.Tensor): Tensor of features with a shape of (batch_size, hidden_size)
"""
features_list = []
print("Extracting "+modal+" features...")
with torch.no_grad():
for ids in tqdm(ids_list):
ids = ids.unsqueeze(0)
if modal=="text":
masks = torch.tensor([1]*len(ids[0])).unsqueeze(0)
features = model.text_enc(ids.to(device), attention_mask=masks.to(device))['last_hidden_state']
features = model.avg_pooling(features, masks)
features = model.text_proj(features)
else:
masks = torch.tensor([1]*(int(len(ids[0])/PATCH_LENGTH))).unsqueeze(0)
features = model.music_enc(ids, masks)['last_hidden_state']
features = model.avg_pooling(features, masks)
features = model.music_proj(features)
features_list.append(features[0])
return torch.stack(features_list).to(device)
def semantic_music_search(query):
"""
Semantic music search
Args:
query (str): Query string
Returns:
output (str): Search result
"""
with open(KEY_MODAL+"_key_cache_"+str(music_length)+".pth", 'rb') as f:
key_cache = torch.load(f)
# encode query
query_ids = encoding_data([query], QUERY_MODAL)
query_feature = get_features(query_ids, QUERY_MODAL)
key_filenames = key_cache["filenames"]
key_features = key_cache["features"]
# compute values
values = compute_values(query_feature, key_features)
idx = torch.argsort(values)[-1]
filename = key_filenames[idx].split('/')[-1][:-4]
with open("wikimusictext.json", 'r') as f:
wikimusictext = json.load(f)
for item in wikimusictext:
if item['title']==filename:
# output = "Title:\n" + item['title']+'\n\n'
# output += "Artist:\n" + item['artist']+ '\n\n'
# output += "Genre:\n" + item['genre']+ '\n\n'
# output += "Description:\n" + item['text']+ '\n\n'
# output += "ABC notation:\n" + item['music']+ '\n\n'
return item["title"], item["artist"], item["genre"], item["text"], item["music"]
output_title = gr.outputs.Textbox(label="Title")
output_artist = gr.outputs.Textbox(label="Artist")
output_genre = gr.outputs.Textbox(label="Genre")
output_description = gr.outputs.Textbox(label="Description")
output_abc = gr.outputs.Textbox(label="ABC notation")
gr.Interface(
fn=semantic_music_search,
inputs=gr.Textbox(lines=2, placeholder="Describe the music you want to search..."),
outputs=[output_title, output_artist, output_genre, output_description, output_abc],
title="🗜️ CLaMP: Semantic Music Search",
description=description,
article=article).launch() |