Spaces:
Sleeping
Sleeping
File size: 975 Bytes
54ee68b 5ddfe23 d962114 5ddfe23 d962114 5ddfe23 3cc2689 d962114 5ddfe23 d962114 5ddfe23 d962114 5ddfe23 d962114 54ee68b 3cc2689 d962114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
from transformers import pipeline
# Load model from Hugging Face Hub
classifier = pipeline("text-classification", model="sandbox338/hatespeech")
# Map model labels to readable labels
label_map = {
"LABEL_0": "Non-hate speech",
"LABEL_1": "Political hate speech",
"LABEL_2": "Offensive language"
}
# Classification function
def classify_text(text):
result = classifier(text)[0]
label = result['label']
return label_map.get(label, "Unknown")
# Example inputs for testing
examples = [
["Hii ni ujumbe wa kawaida bila matusi."],
["Wanasiasa hawa ni wabaya na lazima waondoke!"],
["Unasema upuuzi na wewe ni mjinga kabisa!"]
]
# Gradio Interface
interface = gr.Interface(
fn=classify_text,
inputs=gr.Textbox(lines=4, placeholder="Andika maandishi ya Kiswahili hapa..."),
outputs="text",
title="Swahili Hate Speech Classifier",
examples=examples
)
if __name__ == "__main__":
interface.launch()
|