File size: 10,767 Bytes
9cedb26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import tempfile
import time

import gradio as gr
import numpy as np
import torch
import yt_dlp as youtube_dl
from gradio_client import Client
from pyannote.audio import Pipeline
from transformers.pipelines.audio_utils import ffmpeg_read


YT_LENGTH_LIMIT_S = 36000  # limit to 1 hour YouTube files
SAMPLING_RATE = 16000

API_URL = "https://sanchit-gandhi-whisper-jax.hf.space/"

# set up the Gradio client
client = Client(API_URL)

# set up the diarization pipeline
diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization", use_auth_token=True)


def format_string(timestamp):
    """
    Reformat a timestamp string from (HH:)MM:SS to float seconds. Note that the hour column
    is optional, and is appended within the function if not input.

    Args:
        timestamp (str):
            Timestamp in string format, either MM:SS or HH:MM:SS.
    Returns:
        seconds (float):
            Total seconds corresponding to the input timestamp.
    """
    split_time = timestamp.split(":")
    split_time = [float(sub_time) for sub_time in split_time]

    if len(split_time) == 2:
        split_time.insert(0, 0)

    seconds = split_time[0] * 3600 + split_time[1] * 60 + split_time[2]
    return seconds


# Adapted from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
    """
    Reformat a timestamp from a float of seconds to a string in format (HH:)MM:SS. Note that the hour
    column is optional, and is appended in the function if the number of hours > 0.

    Args:
        seconds (float):
            Total seconds corresponding to the input timestamp.
    Returns:
        timestamp (str):
            Timestamp in string format, either MM:SS or HH:MM:SS.
    """
    if seconds is not None:
        milliseconds = round(seconds * 1000.0)

        hours = milliseconds // 3_600_000
        milliseconds -= hours * 3_600_000

        minutes = milliseconds // 60_000
        milliseconds -= minutes * 60_000

        seconds = milliseconds // 1_000
        milliseconds -= seconds * 1_000

        hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
        return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
    else:
        # we have a malformed timestamp so just return it as is
        return seconds


def format_as_transcription(raw_segments):
    return "\n".join(
        [
            f"{chunk['speaker']} [{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
            for chunk in raw_segments
        ]
    )


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))

    file_length = info["duration_string"]
    file_length_s = format_string(file_length)

    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")

    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def align(transcription, segments, group_by_speaker=True):
    transcription_split = transcription.split("\n")

    # re-format transcription from string to List[Dict]
    transcript = []
    for chunk in transcription_split:
        start_end, transcription = chunk[1:].split("] ")
        start, end = start_end.split("->")

        transcript.append({"timestamp": (format_string(start), format_string(end)), "text": transcription})

    # diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...})
    # we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...})
    new_segments = []
    prev_segment = cur_segment = segments[0]

    for i in range(1, len(segments)):
        cur_segment = segments[i]

        # check if we have changed speaker ("label")
        if cur_segment["label"] != prev_segment["label"] and i < len(segments):
            # add the start/end times for the super-segment to the new list
            new_segments.append(
                {
                    "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]},
                    "speaker": prev_segment["label"],
                }
            )
            prev_segment = segments[i]

    # add the last segment(s) if there was no speaker change
    new_segments.append(
        {
            "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]},
            "speaker": prev_segment["label"],
        }
    )

    # get the end timestamps for each chunk from the ASR output
    end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript])
    segmented_preds = []

    # align the diarizer timestamps and the ASR timestamps
    for segment in new_segments:
        # get the diarizer end timestamp
        end_time = segment["segment"]["end"]
        # find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here
        upto_idx = np.argmin(np.abs(end_timestamps - end_time))

        if group_by_speaker:
            segmented_preds.append(
                {
                    "speaker": segment["speaker"],
                    "text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]),
                    "timestamp": (transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1]),
                }
            )
        else:
            for i in range(upto_idx + 1):
                segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})

        # crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin)
        transcript = transcript[upto_idx + 1 :]
        end_timestamps = end_timestamps[upto_idx + 1 :]

    # final post-processing
    transcription = format_as_transcription(segmented_preds)
    return transcription


def transcribe(audio_path, group_by_speaker=True):
    # run Whisper JAX asynchronously using Gradio client (endpoint)
    job = client.submit(
        audio_path,
        "transcribe",
        True,
        api_name="/predict_1",
    )

    # run diarization while we wait for Whisper JAX
    diarization = diarization_pipeline(audio_path)
    segments = diarization.for_json()["content"]

    # only fetch the transcription result after performing diarization
    transcription, _ = job.result()

    # align the ASR transcriptions and diarization timestamps
    transcription = align(transcription, segments, group_by_speaker=group_by_speaker)

    return transcription


def transcribe_yt(yt_url, group_by_speaker=True):
    # run Whisper JAX asynchronously using Gradio client (endpoint)
    job = client.submit(
        yt_url,
        "transcribe",
        True,
        api_name="/predict_2",
    )

    _return_yt_html_embed(yt_url)
    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)

        with open(filepath, "rb") as f:
            inputs = f.read()

    inputs = ffmpeg_read(inputs, SAMPLING_RATE)
    inputs = torch.from_numpy(inputs).float()
    inputs = inputs.unsqueeze(0)

    diarization = diarization_pipeline(
        {"waveform": inputs, "sample_rate": SAMPLING_RATE},
    )
    segments = diarization.for_json()["content"]

    # only fetch the transcription result after performing diarization
    transcription, _ = job.result()

    # align the ASR transcriptions and diarization timestamps
    transcription = align(transcription, segments, group_by_speaker=group_by_speaker)

    return transcription


title = "Whisper JAX + Speaker Diarization ⚡️"

description = """Combine the speed of Whisper JAX with pyannote speaker diarization to transcribe meetings in super fast time.
"""

article = "Whisper large-v2 model by OpenAI. Speaker diarization model by pyannote. Whisper JAX backend running JAX on a TPU v4-8 through the generous support of the [TRC](https://sites.research.google/trc/about/) programme. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face."

microphone = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", optional=True, type="filepath"),
        gr.inputs.Checkbox(default=True, label="Group by speaker"),
    ],
    outputs=[
        gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
    ],
    allow_flagging="never",
    title=title,
    description=description,
    article=article,
)

audio_file = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
        gr.inputs.Checkbox(default=True, label="Group by speaker"),
    ],
    outputs=[
        gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
    ],
    allow_flagging="never",
    title=title,
    description=description,
    article=article,
)

youtube = gr.Interface(
    fn=transcribe_yt,
    inputs=[
        gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
        gr.inputs.Checkbox(default=True, label="Group by speaker"),
    ],
    outputs=[
        gr.outputs.HTML(label="Video"),
        gr.outputs.Textbox(label="Transcription").style(show_copy_button=True),
    ],
    allow_flagging="never",
    title=title,
    examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", True]],
    cache_examples=False,
    description=description,
    article=article,
)

demo = gr.Blocks()

with demo:
    gr.TabbedInterface([microphone, audio_file, youtube], ["Microphone", "Audio File", "YouTube"])

demo.queue(concurrency_count=1, max_size=5)
demo.launch()