File size: 9,260 Bytes
c39fa45
dab2036
c39fa45
 
 
 
 
 
 
 
 
 
 
 
 
6089c46
c39fa45
5b3945c
 
 
84a239d
c39fa45
 
84a239d
c39fa45
 
dab2036
 
 
 
 
c39fa45
84a239d
dab2036
 
 
4878f60
dab2036
 
c39fa45
 
dab2036
c39fa45
 
 
 
dab2036
c39fa45
 
 
 
 
 
 
 
 
 
dab2036
c39fa45
 
 
84a239d
c39fa45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab2036
c39fa45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab2036
c39fa45
 
 
 
dab2036
c39fa45
 
 
 
 
 
 
 
 
 
dab2036
c39fa45
 
dab2036
c39fa45
 
dab2036
c39fa45
 
 
 
 
 
 
 
dab2036
c39fa45
 
 
 
 
 
 
 
 
dab2036
c39fa45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dab2036
c39fa45
 
 
 
 
dab2036
c39fa45
 
 
 
 
dab2036
dc4a5a9
 
 
f97003c
dab2036
a9c8ec4
dab2036
 
0416a1f
dab2036
 
 
 
af563cc
 
668874a
dab2036
c39fa45
dab2036
c39fa45
dab2036
c39fa45
dab2036
 
c39fa45
 
dab2036
c39fa45
 
dab2036
 
 
 
c39fa45
 
 
 
 
 
dab2036
 
 
 
 
 
 
 
 
 
c39fa45
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import os

import gradio as gr
from transformers import pipeline

from pyChatGPT import ChatGPT

from speechbrain.pretrained import Tacotron2
from speechbrain.pretrained import HIFIGAN

import json
import soundfile as sf


device = "cuda:0" if torch.cuda.is_available() else "cpu"

print(f"Is CUDA available: {torch.cuda.is_available()}")
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

# Intialise STT (Whisper)
pipe = pipeline(
    task="automatic-speech-recognition",
    model="openai/whisper-base.en",
    chunk_length_s=30,
    device=device,
)

# Initialise ChatGPT session
session_token = os.environ.get("SessionToken")
api = ChatGPT(session_token=session_token)

# Intialise TTS (tacotron2) and Vocoder (HiFIGAN)
tacotron2 = Tacotron2.from_hparams(
    source="speechbrain/tts-tacotron2-ljspeech",
    savedir="tmpdir_tts",
    overrides={"max_decoder_steps": 10000},
    run_opts={"device": device},
)
hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder")


def get_response_from_chatbot(text, reset_conversation):
    try:
        if reset_conversation:
            api.refresh_auth()
            api.reset_conversation()
        resp = api.send_message(text)
        response = resp["message"]
    except:
        response = "Sorry, the chatGPT queue is full. Please try again later."
    return response


def chat(input_audio, chat_history, reset_conversation):
    # speech -> text (Whisper)
    message = pipe(input_audio)["text"]

    # text -> response (chatGPT)
    response = get_response_from_chatbot(message, reset_conversation)

    # response -> speech (tacotron2)
    mel_output, mel_length, alignment = tacotron2.encode_text(response)
    wav = hifi_gan.decode_batch(mel_output)
    sf.write("out.wav", wav.squeeze().cpu().numpy(), 22050)

    out_chat = []
    chat_history = chat_history if not reset_conversation else ""
    if chat_history != "":
        out_chat = json.loads(chat_history)

    out_chat.append((message, response))
    chat_history = json.dumps(out_chat)

    return out_chat, chat_history, "out.wav"


start_work = """async() => {
    function isMobile() {
        try {
            document.createEvent("TouchEvent"); return true;
        } catch(e) {
            return false; 
        }
    }
	function getClientHeight()
	{
	  var clientHeight=0;
	  if(document.body.clientHeight&&document.documentElement.clientHeight) {
		var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
	  } else {
		var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
	  }
	  return clientHeight;
	}

    function setNativeValue(element, value) {
      const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
      const prototype = Object.getPrototypeOf(element);
      const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;

      if (valueSetter && valueSetter !== prototypeValueSetter) {
            prototypeValueSetter.call(element, value);
      } else {
            valueSetter.call(element, value);
      }
    }
    var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
    if (!gradioEl) {
        gradioEl = document.querySelector('body > gradio-app');
    }

    if (typeof window['gradioEl'] === 'undefined') {
        window['gradioEl'] = gradioEl;

        const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
        const page2 = window['gradioEl'].querySelectorAll('#page_2')[0]; 

        page1.style.display = "none";
        page2.style.display = "block"; 
        window['div_count'] = 0;
        window['chat_bot'] = window['gradioEl'].querySelectorAll('#chat_bot')[0];
        window['chat_bot1'] = window['gradioEl'].querySelectorAll('#chat_bot1')[0];   
        chat_row = window['gradioEl'].querySelectorAll('#chat_row')[0]; 
        prompt_row = window['gradioEl'].querySelectorAll('#prompt_row')[0]; 
        window['chat_bot1'].children[1].textContent = '';

        clientHeight = getClientHeight();
        new_height = (clientHeight-300) + 'px';
        chat_row.style.height = new_height;
        window['chat_bot'].style.height = new_height;
        window['chat_bot'].children[2].style.height = new_height;
        window['chat_bot1'].style.height = new_height;
        window['chat_bot1'].children[2].style.height = new_height;
        prompt_row.children[0].style.flex = 'auto';
        prompt_row.children[0].style.width = '100%';

        window['checkChange'] = function checkChange() {
            try {
                if (window['chat_bot'].children[2].children[0].children.length > window['div_count']) {
                    new_len = window['chat_bot'].children[2].children[0].children.length - window['div_count'];
                    for (var i = 0; i < new_len; i++) { 
                        new_div = window['chat_bot'].children[2].children[0].children[window['div_count'] + i].cloneNode(true);
                        window['chat_bot1'].children[2].children[0].appendChild(new_div);
                    }
                    window['div_count'] = chat_bot.children[2].children[0].children.length;
                }
                if (window['chat_bot'].children[0].children.length > 1) {
                     window['chat_bot1'].children[1].textContent = window['chat_bot'].children[0].children[1].textContent;
                } else {
                    window['chat_bot1'].children[1].textContent = '';
                }

            } catch(e) {
            }        
        }
        window['checkChange_interval'] = window.setInterval("window.checkChange()", 500);         
    }

    return false;
}"""

with gr.Blocks(title="Talk to chatGPT") as demo:
    gr.Markdown("## Talk to chatGPT ##")
    gr.HTML(
        "<p> Demo uses <a href='https://huggingface.co/openai/whisper-base.en' class='underline'>Whisper</a> to convert the input speech"
        " to transcribed text, <a href='https://chat.openai.com/chat' class='underline'>chatGPT</a> to generate responses, and <a"
        " href='https://huggingface.co/speechbrain/tts-tacotron2-ljspeech' class='underline'>tacotron2</a> to convert the response to"
        " output speech: </p>"
    )
    gr.HTML("<p> <center><img src='https://raw.githubusercontent.com/sanchit-gandhi/codesnippets/main/pipeline.png' width='870'></center> </p>")
    gr.HTML(
        "<p>You can duplicate this space and use your own session token: <a style='display:inline-block'"
        " href='https://huggingface.co/spaces/sanchit-gandhi/chatGPT?duplicate=true'><img"
        " src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=10'"
        " alt='Duplicate Space'></a></p>"
    )
    gr.HTML(
        "<p> Instructions on how to obtain your session token can be found in the video <a style='display:inline-block'"
        " href='https://youtu.be/TdNSj_qgdFk?t=175'><font style='color:blue;weight:bold;'>here</font></a>."
        " Add your session token by going to <i>Settings</i> -> <i>New secret</i> and add the token under the name <i>SessionToken</i>. </p>"
    )
    with gr.Group(elem_id="page_1", visible=True) as page_1:
        with gr.Box():
            with gr.Row():
                start_button = gr.Button("Let's talk to chatGPT! 🗣", elem_id="start-btn", visible=True)
                start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)

    with gr.Group(elem_id="page_2", visible=False) as page_2:
        with gr.Row(elem_id="chat_row"):
            chatbot = gr.Chatbot(elem_id="chat_bot", visible=False).style(color_map=("green", "blue"))
            chatbot1 = gr.Chatbot(elem_id="chat_bot1").style(color_map=("green", "blue"))
        with gr.Row():
            prompt_input_audio = gr.Audio(
                source="microphone",
                type="filepath",
                label="Record Audio Input",
            )
            prompt_output_audio = gr.Audio()

        reset_conversation = gr.Checkbox(label="Reset conversation?", value=False)
        with gr.Row(elem_id="prompt_row"):
            chat_history = gr.Textbox(lines=4, label="prompt", visible=False)
            submit_btn = gr.Button(value="Send to chatGPT", elem_id="submit-btn").style(
                margin=True,
                rounded=(True, True, True, True),
                width=100,
            )

        submit_btn.click(
            fn=chat,
            inputs=[prompt_input_audio, chat_history, reset_conversation],
            outputs=[chatbot, chat_history, prompt_output_audio],
        )

demo.launch(debug=True)