File size: 1,968 Bytes
979bfc3
e201fa0
 
 
 
 
 
 
979bfc3
 
 
e201fa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979bfc3
 
 
 
 
e201fa0
 
979bfc3
 
e201fa0
 
 
979bfc3
e201fa0
 
 
 
 
 
 
 
 
 
 
 
979bfc3
e201fa0
 
 
979bfc3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from transformers import AutoTokenizer, AutoModel
import torch
from typing import List, Dict
import uvicorn

# 定义请求和响应模型
class EmbeddingRequest(BaseModel):
    input: str
    model: str = "jinaai/jina-embeddings-v3"

class EmbeddingResponse(BaseModel):
    status: str
    embeddings: List[List[float]]

# 创建FastAPI应用
app = FastAPI(
    title="Jina Embeddings API",
    description="Text embedding generation service using jina-embeddings-v3",
    version="1.0.0"
)

# 加载模型和分词器
model_name = "jinaai/jina-embeddings-v3"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModel.from_pretrained(model_name, trust_remote_code=True)

@app.post("/generate_embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/hf/v1/embeddings", response_model=EmbeddingResponse)
@app.post("/api/v1/chat/completions", response_model=EmbeddingResponse)
@app.post("/hf/v1/chat/completions", response_model=EmbeddingResponse)
async def generate_embeddings(request: EmbeddingRequest):
    try:
        # 使用分词器处理输入文本
        inputs = tokenizer(request.input, return_tensors="pt", truncation=True, max_length=512)

        # 生成嵌入
        with torch.no_grad():
            embeddings = model(**inputs).last_hidden_state.mean(dim=1)

        return EmbeddingResponse(
            status="success",
            embeddings=embeddings.numpy().tolist()
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
async def root():
    return {
        "status": "active",
        "model": model_name,
        "usage": "Send POST request to /generate_embeddings or /api/v1/embeddings or /hf/v1/embeddings"
    }

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)