File size: 3,932 Bytes
8083b64
 
 
8495f34
fba9f25
 
cfa89f0
cbdef56
 
 
 
 
 
 
 
 
 
 
 
1029ec0
 
 
 
 
 
 
 
 
257616f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1029ec0
 
257616f
 
1029ec0
 
 
 
 
 
 
 
 
 
 
 
cbdef56
 
294751b
cbdef56
 
cfa89f0
cbdef56
 
 
 
 
 
1029ec0
 
 
 
cbdef56
 
 
 
 
 
 
 
 
 
 
 
 
294751b
0c27b04
 
 
 
 
 
 
cbdef56
 
257616f
1029ec0
cbdef56
cfa89f0
521307e
cbdef56
 
fba9f25
fce3dc7
1029ec0
 
6b3887e
1029ec0
 
267287b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer


# summary function - test for single gradio function interfrace
def bulk_function(filename):
  # Create class for data preparation
  class SimpleDataset:
      def __init__(self, tokenized_texts):
          self.tokenized_texts = tokenized_texts
      
      def __len__(self):
          return len(self.tokenized_texts["input_ids"])
      
      def __getitem__(self, idx):
          return {k: v[idx] for k, v in self.tokenized_texts.items()}

  # load tokenizer and model, create trainer
  model_name = "j-hartmann/emotion-english-distilroberta-base"
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
  trainer = Trainer(model=model)  
  print(filename, type(filename))
  print(filename.name)


  # check type of input file
  if filename.name.split(".")[1] == "csv":
    print("entered")
    # read file, drop index if exists
    df_input = pd.read_csv(filename.name, index_col=False)
    if df_input.columns[0] == "Unnamed: 0":
      df_input = df_input.drop("Unnamed: 0", axis=1)
  elif filename.name.split(".")[1] == "xlsx":
    df_input = pd.read_excel(filename.name, index_col=False)
    # handle Unnamed
    if df_input.columns[0] == "Unnamed: 0":
      df_input = df_input.drop("Unnamed: 0", axis=1)
  else:
    return


  # read csv
  # even if index given, drop it
  #df_input = pd.read_csv(filename.name, index_col=False)
  #print("df_input", df_input)
  
  # expect csv format to be in: 
  # 1: ID
  # 2: Texts
  # no index
  # store ids in ordered list
  ids = df_input[df_input.columns[0]].to_list()

  # store sentences in ordered list
  # expects sentences to be in second col
  # of csv with two cols
  lines_s = df_input[df_input.columns[1]].to_list()

    # Tokenize texts and create prediction data set
  tokenized_texts = tokenizer(lines_s,truncation=True,padding=True)
  pred_dataset = SimpleDataset(tokenized_texts)

    # Run predictions -> predict whole df
  predictions = trainer.predict(pred_dataset)

    # Transform predictions to labels
  preds = predictions.predictions.argmax(-1)
  labels = pd.Series(preds).map(model.config.id2label)
  scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)

  # round scores
  scores_rounded = [round(score, 2) for score in scores]

    # scores raw
  temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))

  # container
  anger = []
  disgust = []
  fear = []
  joy = []
  neutral = []
  sadness = []
  surprise = []

  # extract scores (as many entries as exist in pred_texts)
  for i in range(len(lines_s)):
    anger.append(round(temp[i][0], 2))
    disgust.append(round(temp[i][1], 2))
    fear.append(round(temp[i][2], 2))
    joy.append(round(temp[i][3], 2))
    neutral.append(round(temp[i][4], 2))
    sadness.append(round(temp[i][5], 2))
    surprise.append(round(temp[i][6], 2))

  # define df
  df = pd.DataFrame(list(zip(ids,lines_s,labels,scores_rounded, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=[df_input.columns[0], df_input.columns[1],'label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
  print(df)
  # save results to csv
  YOUR_FILENAME = filename.name.split(".")[0] + "_emotion_predictions" + ".csv"  # name your output file
  df.to_csv(YOUR_FILENAME, index=False)

  # return dataframe for space output
  return YOUR_FILENAME
  
gr.Interface(bulk_function, inputs=[gr.inputs.File(file_count="single", type="file", label="Upload file", optional=False),],
             outputs=[gr.outputs.File(label="Output file")],
             examples=[["emotion_pred_test.csv"]], # computes, doesn't export df so far
             theme="huggingface",
             allow_flagging=False,
             ).launch(debug=True)