Spaces:
Runtime error
Runtime error
File size: 2,620 Bytes
8083b64 cbdef56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import gradio as gr
import pandas as pd
import numpy as np
# summary function - test for single gradio function interfrace
def bulk_function(filename):
# Create class for data preparation
class SimpleDataset:
def __init__(self, tokenized_texts):
self.tokenized_texts = tokenized_texts
def __len__(self):
return len(self.tokenized_texts["input_ids"])
def __getitem__(self, idx):
return {k: v[idx] for k, v in self.tokenized_texts.items()}
# load tokenizer and model, create trainer
model_name = "j-hartmann/emotion-english-distilroberta-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
trainer = Trainer(model=model)
# read file lines
with open("/content/YOUR_FILENAME.csv", "r") as f:
lines = f.readlines()
# expects unnamed:0 or index, col name -> strip both
lines_s = [item.split("\n")[0].split(",")[-1] for item in lines][1:]
print(lines_s[1:])
# Tokenize texts and create prediction data set
tokenized_texts = tokenizer(lines_s[1:],truncation=True,padding=True)
pred_dataset = SimpleDataset(tokenized_texts)
# Run predictions
predictions = trainer.predict(pred_dataset)
# Transform predictions to labels
preds = predictions.predictions.argmax(-1)
labels = pd.Series(preds).map(model.config.id2label)
scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)
# scores raw
temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True))
# work in progress
# container
anger = []
disgust = []
fear = []
joy = []
neutral = []
sadness = []
surprise = []
# extract scores (as many entries as exist in pred_texts)
for i in range(len(lines_s[1:])):
anger.append(temp[i][0])
disgust.append(temp[i][1])
fear.append(temp[i][2])
joy.append(temp[i][3])
neutral.append(temp[i][4])
sadness.append(temp[i][5])
surprise.append(temp[i][6])
# define df
df = pd.DataFrame(list(zip(lines_s[1:],preds,labels,scores, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=['text','pred','label','score', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
# save results to csv
YOUR_FILENAME = "YOUR_FILENAME_EMOTIONS_gradio.csv" # name your output file
df.to_csv(YOUR_FILENAME)
# return dataframe for space output
return df
# launch space
gr.Interface(bulk_function, [gr.inputs.File(file_count="single", type="file", label="str", optional=False),], "dataframe",
).launch() |