File size: 11,105 Bytes
1625bb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
# modules/code_executor/routes.py
from flask import Blueprint, request, jsonify
import sys
import io
import threading
import queue
import time
import traceback
import os
import re
from openai import OpenAI
from config import API_KEY, BASE_URL, OPENAI_MODEL
code_executor_bp = Blueprint('code_executor', __name__)
# 创建OpenAI客户端
client = OpenAI(
api_key=API_KEY,
base_url=BASE_URL
)
# 执行上下文存储
execution_contexts = {}
class CustomStdin:
def __init__(self, input_queue):
self.input_queue = input_queue
self.buffer = ""
def readline(self):
if not self.buffer:
self.buffer = self.input_queue.get() + "\n"
result = self.buffer
self.buffer = ""
return result
class InteractiveExecution:
"""管理Python代码的交互式执行"""
def __init__(self, code):
self.code = code
self.context_id = str(time.time())
self.is_complete = False
self.is_waiting_for_input = False
self.stdout_buffer = io.StringIO()
self.last_read_position = 0
self.input_queue = queue.Queue()
self.error = None
self.thread = None
self.should_terminate = False
def run(self):
"""在单独的线程中启动执行"""
self.thread = threading.Thread(target=self._execute)
self.thread.daemon = True
self.thread.start()
# 给执行一点时间开始
time.sleep(0.1)
return self.context_id
def _execute(self):
"""执行代码,处理标准输入输出"""
try:
# 保存原始的stdin/stdout
orig_stdin = sys.stdin
orig_stdout = sys.stdout
# 创建自定义stdin
custom_stdin = CustomStdin(self.input_queue)
# 重定向stdin和stdout
sys.stdin = custom_stdin
sys.stdout = self.stdout_buffer
try:
# 检查终止的函数
self._last_check_time = 0
def check_termination():
if self.should_terminate:
raise KeyboardInterrupt("Execution terminated by user")
# 设置一个模拟__main__模块的命名空间
shared_namespace = {
"__builtins__": __builtins__,
"_check_termination": check_termination,
"time": time,
"__name__": "__main__"
}
# 在这个命名空间中执行用户代码
try:
exec(self.code, shared_namespace)
except KeyboardInterrupt:
print("\nExecution terminated by user")
except Exception as e:
self.error = {
"error": str(e),
"traceback": traceback.format_exc()
}
finally:
# 恢复原始stdin/stdout
sys.stdin = orig_stdin
sys.stdout = orig_stdout
# 标记执行完成
self.is_complete = True
except Exception as e:
self.error = {
"error": str(e),
"traceback": traceback.format_exc()
}
self.is_complete = True
def terminate(self):
"""终止执行"""
self.should_terminate = True
# 如果在等待输入,放入一些内容以解除阻塞
if self.is_waiting_for_input:
self.input_queue.put("\n")
# 给执行一点时间终止
time.sleep(0.2)
# 标记为完成
self.is_complete = True
return True
def provide_input(self, user_input):
"""为运行的代码提供输入"""
self.input_queue.put(user_input)
self.is_waiting_for_input = False
return True
def get_output(self):
"""获取stdout缓冲区的当前内容"""
output = self.stdout_buffer.getvalue()
return output
def get_new_output(self):
"""只获取自上次读取以来的新输出"""
current_value = self.stdout_buffer.getvalue()
if self.last_read_position < len(current_value):
new_output = current_value[self.last_read_position:]
self.last_read_position = len(current_value)
return new_output
return ""
@code_executor_bp.route('/generate', methods=['POST'])
def generate_code():
"""使用AI生成Python代码"""
try:
prompt = request.json.get('prompt')
if not prompt:
return jsonify({
"success": False,
"error": "No prompt provided"
})
# 构建带有适当上下文的提示
full_prompt = f"""You are a Python programming assistant. Generate Python code based on this requirement:
{prompt}
Provide only the Python code without any explanation or markdown formatting."""
# 调用OpenAI API
response = client.chat.completions.create(
model=OPENAI_MODEL,
messages=[{"role": "user", "content": full_prompt}]
)
# 提取和清理代码
code = response.choices[0].message.content.strip()
# 删除Markdown代码块标记(如果存在)
code = re.sub(r'```python\n', '', code)
code = re.sub(r'```', '', code)
return jsonify({
"success": True,
"code": code
})
except Exception as e:
return jsonify({
"success": False,
"error": str(e)
})
@code_executor_bp.route('/execute', methods=['POST'])
def execute_code():
"""执行Python代码"""
try:
code = request.json.get('code')
if not code:
return jsonify({
"success": False,
"error": "No code provided"
})
# 创建并启动执行
execution = InteractiveExecution(code)
context_id = execution.run()
# 存储在全局上下文中
execution_contexts[context_id] = execution
# 检查初始状态
if execution.error:
# 执行立即失败
error_info = execution.error
del execution_contexts[context_id]
return jsonify({
"success": False,
"error": error_info["error"],
"traceback": error_info["traceback"]
})
# 获取初始输出
output = execution.get_output()
# 更新上次读取位置以标记此输出为已读
execution.last_read_position = len(output)
# 检查是否命中input()调用或完成执行
if execution.is_complete:
# 执行完成,不需要输入
del execution_contexts[context_id]
return jsonify({
"success": True,
"output": output,
"needsInput": False
})
else:
# 假设我们正在等待输入
execution.is_waiting_for_input = True
return jsonify({
"success": True,
"output": output,
"needsInput": True,
"context_id": context_id
})
except Exception as e:
return jsonify({
"success": False,
"error": str(e),
"traceback": traceback.format_exc()
})
@code_executor_bp.route('/input', methods=['POST'])
def provide_input():
"""为正在执行的代码提供输入"""
try:
user_input = request.json.get('input', '')
context_id = request.json.get('context_id')
if not context_id or context_id not in execution_contexts:
return jsonify({
"success": False,
"error": "Invalid or expired execution context"
})
execution = execution_contexts[context_id]
# 提供输入
execution.provide_input(user_input)
# 给一点时间处理
time.sleep(0.1)
# 获取输入后的新输出
new_output = execution.get_new_output()
# 检查执行状态
if execution.is_complete:
# 执行已完成
if execution.error:
# 有错误
error_info = execution.error
del execution_contexts[context_id]
return jsonify({
"success": False,
"error": error_info["error"],
"traceback": error_info["traceback"]
})
else:
# 干净执行
del execution_contexts[context_id]
return jsonify({
"success": True,
"output": new_output,
"needsInput": False
})
else:
# 执行仍在运行,假设我们需要更多输入
execution.is_waiting_for_input = True
return jsonify({
"success": True,
"output": new_output,
"needsInput": True
})
except Exception as e:
return jsonify({
"success": False,
"error": str(e),
"traceback": traceback.format_exc()
})
@code_executor_bp.route('/stop', methods=['POST'])
def stop_execution():
"""停止执行"""
try:
context_id = request.json.get('context_id')
if not context_id or context_id not in execution_contexts:
return jsonify({
"success": False,
"error": "Invalid or expired execution context"
})
execution = execution_contexts[context_id]
# 终止执行
execution.terminate()
# 获取最终输出
output = execution.get_output()
# 清理
del execution_contexts[context_id]
return jsonify({
"success": True,
"output": output,
"message": "Execution terminated"
})
except Exception as e:
return jsonify({
"success": False,
"error": str(e),
"traceback": traceback.format_exc()
}) |