File size: 2,150 Bytes
22261d7
 
 
 
 
 
 
 
 
 
3d94688
3a5c829
 
22261d7
 
 
 
 
 
 
 
3d94688
b7b3937
22261d7
 
 
 
 
 
b5dfe02
 
22261d7
 
 
caef37e
4b5a779
 
 
caef37e
22261d7
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment.
#Once you have Streamlit installed, you can import it into your Python script using the import statement,

import streamlit as st

#As Langchain team has been working aggresively on improving the tool, we can see a lot of changes happening every weeek,
#As a part of it, the below import has been depreciated
#from langchain.llms import OpenAI

#New import from langchain, which replaces the above
#from langchain_openai import OpenAI
#from langchain.llms import HuggingFaceEndpoint
from langchain_community.llms import HuggingFaceEndpoint

#When deployed on huggingface spaces, this values has to be passed using Variables & Secrets setting, as shown in the video :)
#import os
#os.environ["OPENAI_API_KEY"] = "sk-PLfFwPq6y24234234234FJ1Uc234234L8hVowXdt"

#Function to return the response
def load_answer(question):
    # "text-davinci-003" model is depreciated, so using the latest one https://platform.openai.com/docs/deprecations
    #llm = OpenAI(model_name="gpt-3.5-turbo-instruct",temperature=0)
    llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2", Temperature=0.3)
    #Last week langchain has recommended to use invoke function for the below please :)
    answer=llm.invoke(question)
    return answer


#App UI starts here
st.set_page_config(page_title="Somesh AI Powered CHATGPT Demo", page_icon=":robot:")
st.header("Somesh AI Powered CHATGPT Demo")

#Gets the user input
def get_text():
    input_text = st.text_input("You:", "Pls Write Your Question.......")
    if input_text.isalpha():
        st.write(text, 'string', )
    else:
        st.write('Please type in a string Only')
    return input_text

user_input=get_text()
response = load_answer(user_input)

submit = st.button('Generate')  

#If generate button is clicked
if submit:

    st.subheader("Answer:")

    st.write(response)