File size: 64,526 Bytes
0197431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "metadata": {}
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "\n",
    "import torch\n",
    "# from torch.utils.data import Dataset, DataLoader, Subset\n",
    "from torch import nn\n",
    "from torchvision import models\n",
    "import torch.nn.functional as F\n",
    "from torchvision.transforms import v2\n",
    "\n",
    "from PIL import Image\n",
    "\n",
    "# from PIL import ImageFile\n",
    "# ImageFile.LOAD_TRUNCATED_IMAGES = True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "metadata": {}
   },
   "outputs": [],
   "source": [
    "labels = ['Pastel',\n",
    "            'Yellow Belly',\n",
    "            'Enchi',\n",
    "            'Clown',\n",
    "            'Leopard',\n",
    "            'Piebald',\n",
    "            'Orange Dream',\n",
    "            'Fire',\n",
    "            'Mojave',\n",
    "            'Pinstripe',\n",
    "            'Banana',\n",
    "            'Normal',\n",
    "            'Black Pastel',\n",
    "            'Lesser',\n",
    "            'Spotnose',\n",
    "            'Cinnamon',\n",
    "            'GHI',\n",
    "            'Hypo',\n",
    "            'Spider',\n",
    "            'Super Pastel']\n",
    "num_labels = len(labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "metadata": {}
   },
   "outputs": [],
   "source": [
    "new_layers = nn.Sequential(\n",
    "    nn.Linear(1920, 1000),  # Reduce dimension from 1024 to 500\n",
    "    nn.BatchNorm1d(1000),   # Normalize the activations from the previous layer\n",
    "    nn.ReLU(),             # Non-linear activation function\n",
    "    nn.Dropout(0.5),       # Dropout for regularization (50% probability)\n",
    "    nn.Linear(1000, num_labels)  # Final layer for class predictions\n",
    ")\n",
    "\n",
    "IMAGE_SIZE = 512\n",
    "transform = v2.Compose([\n",
    "    v2.ToImage(),\n",
    "    v2.Resize((IMAGE_SIZE, IMAGE_SIZE)),\n",
    "    v2.ToDtype(torch.float32, scale=True),\n",
    "    v2.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])\n",
    "    ])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Predictions"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "metadata": {}
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DenseNet(\n",
       "  (features): Sequential(\n",
       "    (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n",
       "    (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "    (relu0): ReLU(inplace=True)\n",
       "    (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n",
       "    (denseblock1): _DenseBlock(\n",
       "      (denselayer1): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer2): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer3): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer4): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer5): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer6): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "    )\n",
       "    (transition1): _Transition(\n",
       "      (norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "      (relu): ReLU(inplace=True)\n",
       "      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)\n",
       "    )\n",
       "    (denseblock2): _DenseBlock(\n",
       "      (denselayer1): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer2): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer3): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer4): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer5): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer6): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer7): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer8): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer9): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer10): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer11): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer12): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "    )\n",
       "    (transition2): _Transition(\n",
       "      (norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "      (relu): ReLU(inplace=True)\n",
       "      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)\n",
       "    )\n",
       "    (denseblock3): _DenseBlock(\n",
       "      (denselayer1): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer2): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer3): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer4): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer5): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer6): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer7): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer8): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer9): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer10): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(544, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(544, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer11): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(576, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer12): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(608, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(608, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer13): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(640, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer14): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(672, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(672, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer15): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(704, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(704, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer16): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(736, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(736, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer17): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(768, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(768, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer18): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(800, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(800, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer19): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(832, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer20): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(864, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(864, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer21): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer22): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer23): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer24): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer25): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer26): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1056, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1056, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer27): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1088, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1088, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer28): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1120, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer29): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1152, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer30): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1184, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1184, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer31): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1216, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1216, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer32): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1248, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1248, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer33): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1280, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer34): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1312, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1312, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer35): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1344, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1344, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer36): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1376, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1376, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer37): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1408, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1408, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer38): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1440, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1440, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer39): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1472, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1472, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer40): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1504, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1504, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer41): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1536, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1536, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer42): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1568, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1568, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer43): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1600, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1600, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer44): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1632, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1632, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer45): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1664, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1664, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer46): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1696, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1696, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer47): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1728, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer48): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1760, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1760, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "    )\n",
       "    (transition3): _Transition(\n",
       "      (norm): BatchNorm2d(1792, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "      (relu): ReLU(inplace=True)\n",
       "      (conv): Conv2d(1792, 896, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "      (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)\n",
       "    )\n",
       "    (denseblock4): _DenseBlock(\n",
       "      (denselayer1): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(896, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer2): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(928, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer3): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(960, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer4): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(992, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer5): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1024, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer6): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1056, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1056, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer7): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1088, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1088, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer8): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1120, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1120, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer9): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1152, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1152, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer10): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1184, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1184, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer11): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1216, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1216, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer12): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1248, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1248, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer13): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1280, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer14): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1312, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1312, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer15): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1344, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1344, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer16): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1376, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1376, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer17): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1408, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1408, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer18): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1440, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1440, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer19): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1472, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1472, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer20): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1504, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1504, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer21): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1536, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1536, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer22): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1568, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1568, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer23): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1600, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1600, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer24): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1632, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1632, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer25): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1664, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1664, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer26): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1696, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1696, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer27): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1728, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1728, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer28): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1760, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1760, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer29): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1792, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1792, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer30): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1824, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1824, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer31): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1856, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1856, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "      (denselayer32): _DenseLayer(\n",
       "        (norm1): BatchNorm2d(1888, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu1): ReLU(inplace=True)\n",
       "        (conv1): Conv2d(1888, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n",
       "        (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "        (relu2): ReLU(inplace=True)\n",
       "        (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n",
       "      )\n",
       "    )\n",
       "    (norm5): BatchNorm2d(1920, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "  )\n",
       "  (classifier): Sequential(\n",
       "    (0): Linear(in_features=1920, out_features=1000, bias=True)\n",
       "    (1): BatchNorm1d(1000, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
       "    (2): ReLU()\n",
       "    (3): Dropout(p=0.5, inplace=False)\n",
       "    (4): Linear(in_features=1000, out_features=20, bias=True)\n",
       "  )\n",
       ")"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "densenet = models.densenet201(weights='DenseNet201_Weights.DEFAULT')\n",
    "densenet.classifier = new_layers\n",
    "\n",
    "# If using GPU\n",
    "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "\n",
    "checkpoint = torch.load(f'model/model_v8_epoch9.pt', map_location=device)\n",
    "densenet.load_state_dict(checkpoint['model_state_dict'])\n",
    "\n",
    "densenet.eval()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "metadata": {}
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[0.6777233481407166, 0.581626296043396, 0.5196343660354614]"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "test_img_path = 'test_img/test3_leopard_fire.png'\n",
    "img = Image.open(test_img_path)\n",
    "input_img = transform(img)\n",
    "input_img = input_img.unsqueeze(0)\n",
    "\n",
    "\n",
    "with torch.no_grad():\n",
    "    output = densenet(input_img)\n",
    "\n",
    "predicted_probs = torch.sigmoid(output).to('cpu')\n",
    "prediction = pd.DataFrame(predicted_probs, index=['predictions'],\n",
    "                          columns=labels).T.sort_values(by=['predictions'], ascending=False)\n",
    "\n",
    "\n",
    "prediction_probs = prediction.query('predictions > 0.5').reset_index(names='morphs')['morphs'].to_list()\n",
    "prediction_confidence = prediction.query('predictions > 0.5')['predictions'].to_list()\n",
    "\n",
    "prediction_confidence\n",
    "\n",
    "# predicted_probs_list = predicted_probs.flatten().tolist()\n",
    "# idx = [i for i, x in enumerate(predicted_probs_list) if x > 0.5]\n",
    "# prediction = [labels[idx] for idx in idx]\n",
    "# prediction"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "deep-learning",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}